电蚀是感应电机轴承服役过程中常见的物理现象。电蚀现象的发生使得电机轴承表面更容易发生点蚀剥落等局部损伤。本文提出提升小波分形策略,用于从多成分耦合的振动信号中提取反映轴承故障的冲击性故障特征。该策略通过对经典冗余提升小波包分解产生的相邻子空间进行后处理,生成新的隐小波包尺度,可有效弥补二进小波包分析方法对过渡带区间特征提取能力的不足。通过隐小波包子空间的中心嵌套集合实现了振动信号的中心极化多分辨分析。该方法还能继承冗余提升小波包分解的诸多优良特性(如精确线性相位及平移不变性等),从而进一步增强了振动信号中非平稳冲击特征的分析提取能力。将提出的方法应用于某型号平整机的感应电机轴承振动信号分析,在某个由提升小波分形策略生成的隐小波包子空间中提取了表征轴承机械故障的周期性冲击特征,经停机检修验证该故障特征是由轴承中已经存在的电蚀故障所引发。将所提出方法的特征提取效果与基于双树复小波等的主流分析方法进行对比,验证了提升小波分形策略具有更加全面的轴承故障特征分析能力。
关键词:感应电机;滚动轴承;电蚀;提升策略;隐小波包尺度
Abstract
Electrolytic corrosion is a common physical phenomenon in service duration of roller bearing in an induction motor, which makes the surfaces of the bearing more vulnerable to localized mechanical damage. In order to enhance effectiveness of fault detection based on vibration measurement, a novel fractal lifting scheme (FLS) is proposed for signal decomposition. Implicit wavelet packets, generated by combination of neighboring wavelet packets, can address the problem of insufficient detection ability of classic dyadic discrete wavelet transform in transition band feature extraction, thus enhance the effectiveness of nonstationary transient component extraction. Mathematically we show that sets composed of implicit wavelet packets can be used to construct fractal geometry in the frequency-scale plane. A novel fault feature extraction method is proposed based on the combination of FLS and kurtosis. This method is applied to vibration signal analysis of a roller bearing in a high power induction motor installed on a leveling machine. Periodic impulses, induced by mechanical damage on the bearing, were successfully extracted in an ensemble wavelet packet generated by the fractal lifting scheme. Thus the electrolytic fault causing the mechanical damage was identified in a shutdown maintenance. The processing results by the proposed method are compared with some other mainstream methods to show its enhanced performance in fault feature isolation.
Key words: Induction motor; rolling bearing; electrolytic corrosion; lifting scheme; ensemble wavelet packet
关键词
感应电机 /
滚动轴承 /
电蚀 /
提升策略 /
隐小波包尺度
{{custom_keyword}} /
Key words
Induction motor /
rolling bearing /
electrolytic corrosion /
lifting scheme /
ensemble wavelet packet
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] High-performance vector control without AC phase current sensors for induction motor drives: Simulation and real-time implementation[J]. ISA Transactions, 2021, 109: 298-306.
[2] Khanjani M, Ezoji M. Electrical fault detection in three-phase induction motor using deep network-based features of thermograms[J]. Measurement, 2021, 173: 108622.
[3] Fu P L, Wang J J, Zhang X, et al. Dynamic Routing-based Multimodal Neural Network for Multi-sensory Fault Diagnosis of Induction Motor[J]. Journal of Manufacturing Systems, 2020, 55: 264-272.
[4] Glowacz A. Acoustic based fault diagnosis of three-phase induction motor[J]. Applied Acoustics, 2018, 137: 82-89.
[5] 相阿峰,郭秀违. 高速动车牵引电机轴承电蚀及对策[J]. 铁道机车车辆, 2015, 35(2): 102-106.
Xiang afeng,Guo Xiuwei. Electric erosion of bearing on traction motor of high-speed EMU and its solution[J]. Railway Locomotive & Car. 2015, 35(2): 102-106.
[6] 汪久根,冯兰兰,李阳. 粗糙表面对电蚀的影响[J]. 浙江大学学报(工学版). 2015, 49(11): 2025-2032.
Wang Jiugen, Feng Lanlan, Li Yang. Influence of surface topography on electrical pitting[J]. Journal of Zhejiang University (Engineering Science). 2015, 49(11): 2025-2032.
[7] 陈盼,魏晓斌,高国强,等. 动车组接地回流分配机理试验研究[J]. 高压电器,2016,52(11):0119-0123.
Chen Pan, Wei Xiaobin, Gao Guoqiang, et al. Experimental Study on the Characteristics of Grounding-return Current for High-speed Electric Multiple Units[J]. High Voltage Apparatus, 2016,52(11):0119-0123.
[8] 尚江傲,李俊,陈中杰. 地铁电机轴承电蚀故障分析及对策[J]. 技术与市场,2017,24(3): 39-39.
Shang Jiangao, Li Jun, Chen Zhongjie. Technology and Market,Analysis and Countermeasures of electric erosion fault of Metro motor bearing[J], 2017,24(3): 39-39.
[9] 程天峰. SS4改型机车轴箱轴承损坏原因分析及应对措施[J]. 电力机车与城轨车辆, 2009, 2015(4): 55-56.
Cheng Tianfeng. Analysis of axle box and bearing damage reasons and countermeasures on type SS4 modified locomotive[J]. Electric Locomotives & Mass Transit Vehicles, 2015(4): 55-56.
[10] Kumar A, Gandhi, C P, Zhou Y Q, et al. Latest developments in gear defect diagnosis and prognosis: A review [J]. Measurement, 2020, 158, 107735.
[11] Wu F, Hao Y, Zhao J, et al. Current similarity based open-circuit fault diagnosis for induction motor drives with discrete wavelet transform[J]. Microelectronics Reliability, 2017, 75: 309-316.
[12] 吴耀春,赵荣珍,靳伍银. EWT与加权多邻域粗糙集结合的旋转机械故障特征提取方法[J]. 振动与冲击, 2019, 38(24): .235-242.
Wu Yaochun, Zhao Rongzhen, Jin Wuyin. Fault feature extraction of rotating machinery based on EWT and a weighted multi neighborhood rough set [J]. Journal of vibration and shock, 2019, 38(24): .235-242.
[13] 张向阳, 陈果, 郝腾飞. 基于机匣信号的滚动轴承故障卷积神经网络诊断方法[J]. 航空动力学报, 2019,34(12): 2729-2737.
Zhang Xiangyang, Chen Guo, Hao Ttengfei. Convolutional neural network diagnosis method of rolling bearing fault based on casing signal[J]. Journal of Aerospace Power, 2019,34(12): 2729-2737.
[14] 龙莹,苏燕辰,高扬,等. 高速列车齿轮箱轴承故障诊断的自适应TQWT方法[J]. 中国测试. 2019,45(11): 108-113.
Long Ying. Su Yanchen, Gao Yang, et al. Fault diagnosis of gearbox bearings of high-speed train applying adaptive TQWT[J]. China Measurement and Test. 2019,45(11): 108-113.
[15] Chen B Q,Zhang Z S,Zi Y Y,e t al. A pseudo wavelet system-based vibration signature extracting method for rotating machinery fault detection [J]. Science China Physics, Mechanics & Astronomy,2013,56(5):1294-1306.
[16] 曹新城,陈彬强,姚斌,等. 机械故障特征提取的拓扑集分形稀疏字典[J]. 振动与冲击, 2020,39(06): 210-219.
Cao Xincheng, Chen Binqiang, Yao Bin, et al. Sparsity promoted dictionary using topological fractal multi-resolution and its applications in mechanical fault detection[J]. Journal of vibration and shock, 2020,39(06): 210-219
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}