填土加筋对悬臂式挡墙地震响应影响的模型试验研究

魏明1,2,罗强1,2,蒋良潍1,2,王腾飞1,2,张良1,2,连继峰3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 237-247.

PDF(3825 KB)
PDF(3825 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 237-247.
论文

填土加筋对悬臂式挡墙地震响应影响的模型试验研究

  • 魏明1,2,罗强1,2,蒋良潍1,2,王腾飞1,2,张良1,2,连继峰3
作者信息 +

Model tests for effect of fill reinforcement on seismic response of cantilever retaining wall

  • WEI Ming1,2, LUO Qiang1,2, JIANG Liangwei1,2, WANG Tengfei1,2, ZHANG Liang1,2, LIAN Jifeng3
Author information +
文章历史 +

摘要

为探讨墙后填土加筋对悬臂式挡墙抗震性能的改善效果,开展了缩尺比1:4的悬臂式挡墙及墙后填土加筋的振动台模型试验。采用小震0.11g、中震0.24g、大震0.39g的简谐波激励模型结构,获得加速度、位移、土压力等响应量,分析了填土加筋对模型自振频率和阻尼比的影响,对比了加速度放大系数、振动位移、墙-土相互作用等地震响应差异,讨论了填土加筋的减震效应随加载幅值变化特征。试验表明:填土加筋可提高墙-土体系的整体性、减小振动伤损,自振频率和阻尼比在历经振动后的变化幅度相对未加筋模型更小;加筋措施可使小震和中震下墙体惯性力与地震土压力产生明显相位错峰,大幅降低不利位移状态时墙体承受的地震土压力,但大震下墙体水平位移小于填土,墙-土挤压作用显著,减震效应发挥欠充分。
关键词:悬臂式挡墙;振动台试验;填土加筋;地震响应;减震效应

Abstract

In order to investigate the effect of backfill reinforcement on the seismic performance of cantilever retaining wall, shaking table tests on a 1/4 scale model of backfill reinforced and unreinforced behind cantilever retaining wall were conducted. The model structures were excited by simple harmonics of 0.11g for minor earthquake, 0.24g for moderate earthquake and 0.39g for major earthquake, and the responses such as acceleration, displacement and earth pressure were obtained. The influence of soil reinforcement on the natural frequency and damping ratio of the model is analyzed. The differences of seismic responses such as acceleration amplification factor, vibration displacement and wall-soil interaction are compared, and the characteristics of seismic mitigation effect of backfill reinforcement with loading amplitude are discussed. The results show that the backfill reinforcement can enhance the integrity of the wall-soil system and reduce the vibration damage, and the variation range of natural frequency and damping ratio after vibration are smaller than that of the unreinforced model; Backfill reinforcement measures can cause obvious phase misalignment between inertia force and seismic earth pressure on the wall under minor and moderate earthquakes, and greatly reduce the seismic earth pressure on the wall in the state of unfavorable displacement. However, the horizontal displacement of the wall is less than that of backfill under major earthquake, and the backfill chases and squeezes the wall significantly, and the seismic mitigation effect is not fully exerted.
Key words: cantilever retaining wall; shaking table test; backfill reinforcement; seismic response; seismic mitigation effect

关键词

悬臂式挡墙 / 振动台试验 / 填土加筋 / 地震响应 / 减震效应

Key words

cantilever retaining wall / shaking table test / backfill reinforcement / seismic response / seismic mitigation effect

引用本文

导出引用
魏明1,2,罗强1,2,蒋良潍1,2,王腾飞1,2,张良1,2,连继峰3. 填土加筋对悬臂式挡墙地震响应影响的模型试验研究[J]. 振动与冲击, 2022, 41(19): 237-247
WEI Ming1,2, LUO Qiang1,2, JIANG Liangwei1,2, WANG Tengfei1,2, ZHANG Liang1,2, LIAN Jifeng3. Model tests for effect of fill reinforcement on seismic response of cantilever retaining wall[J]. Journal of Vibration and Shock, 2022, 41(19): 237-247

参考文献

[1] 罗照新,李安洪,周成,等. 一种悬臂式挡土墙加筋复合构造[P]. 中国,ZL200820223651.7,2009-10-7.
LUO Zhaoxin, LI Anhong, ZHOU Cheng, et al. A reinforced composite structure of cantilever retaining wall [P]. China, ZL200820223651.7, 2009-10-7.
[2] 王娅娜. 悬臂式挡土墙力学特性及结构优化研究[D]. 成都: 西南交通大学,2015.
[3] 周健, 李翠娜, 黄金, 等. 扶壁式加筋复合挡墙变形规律和受力机理[J]. 同济大学学报(自然科学版),2015, 43(4): 529-535.
ZHOU Jian, LI Cuina, HUANG Jin, et al. The deformation law and stress mechanism of wrapped-reinforced and counterfort combined retaining wall [J]. Journal of Tongji University (Natural Science), 2015, 43(4): 529-535.
[4] 文畅平, 杨果林, 江学良, 等. 重力式与格构式组合支挡结构位移和应变地震响应的振动台试验研究[J]. 振动与冲击,2012, 31(24): 183-189+196.
WEN Changping, YANG Guolin, JIANG Xueliang, et al. Shaking table test for seismic displacement and strain responses of a combined earth retaining structure under seismic loads [J]. Journal of Vibration and Shock, 2012, 31(24): 183-189+196.
[5] 于仲洋, 张鸿儒, 邱滟佳, 等. 十字交叉型地铁车站结构的振动台试验研究[J]. 振动与冲击,2021, 40(9): 142-151.
YU Zhongyang, ZHANG Hongru, QIU Yanjia, et al. Shaking table tests for cross subway station structure [J]. Journal of Vibration and Shock, 2021, 40(9): 142-151.
[6] Kloukinas P, Di Santolo A S, Penna A, et al. Investigation of seismic response of cantilever retaining walls: Limit analysis vs shaking table testing[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 432-445.
[7] Atik L A, Sitar N. Seismic Earth Pressures on Cantilever Retaining Structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1324-1333.
[8] Jo S B, Ha J G, Lee J S, et al. Evaluation of the seismic earth pressure for inverted T-shape stiff retaining wall in cohesionless soils via dynamic centrifuge[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 345-357.
[9] 高洪梅, 卜春尧, 王志华, 等. 回填EPS混合土的防滑悬臂式挡墙地震稳定性分析[J]. 岩土工程学报, 2017, 39(12): 2278-2286.
GAO Hongmei, BU Chunyao, WANG Zhihua, et al. Seismic stability of anti-sliding cantilever retaining wall with EPS composite soil [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2278-2286.
[10] 何江, 肖世国. 多级拼装悬臂式挡墙地震响应振动台模型试验[J]. 岩石力学与工程学报, 2021, 40(2): 399-409.
HE Jiang, XIAO Shiguo. Shaking table model test study on seismic responses of assembled multi-step cantilever retaining walls [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 399-409.
[11] Tatsuoka F, Tateyama M, Koseki J. Performance of soil retaining walls for railway embankment[J]. Soils and Foundations, 1996, Special Issue on the 1995 Hyogoken–Nambu Earthquake(special issue): 311-324.
[12] Kuwano J, Miyata Y, Koseki J. Performance of reinforced soil walls during the 2011 Tohoku earthquake[J]. Geosynthetics International, 2014, 21(3): 179-196.
[13] 李广信. 地震与加筋土结构[J]. 土木工程学报, 2016, 49(7): 1-8.
LI Guangxin. Earthquake and earth reinforcement [J]. China Civil Engineering Journal, 2016, 49(7): 1-8.
[14] Tatsuoka F, Tateyama M, Mohri Y, et al. Remedial treatment of soil structures using geosynthetic-reinforcing technology[J]. Geotextiles and Geomembranes, 2007, 25(4): 204-220.
[15] Krishna A M, Latha G M. Seismic behaviour of rigid-faced reinforced soil retaining wall models: reinforcement effect[J]. Geosynthetics International, 2009, 16(5): 364-373.
[16] 朱宏伟, 姚令侃, 张旭海. 两种加筋土挡墙的动力特性比较及抗震设计建议[J]. 岩土工程学报, 2012, 34(11): 2072-2080.
ZHU Hongwei, YAO Lingkan, ZHANG Xuhai. Comparison of dynamic characteristics between netted and packaged reinforced soil retaining walls and recommendations for seismic design [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2072-2080.
[17] 徐鹏, 蒋关鲁, 任世杰, 等. 简谐波作用下加筋土挡墙动土压力模型试验研究[J]. 岩石力学与工程学报, 2018, 37(S2): 4283-4289.
XU Peng, JIANG Guanlu, REN Shijie, et al. Study on dynamic earth pressure of reinforced soil retaining walls under harmonic wave by model test [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4283-4289.
[18] 徐鹏, 蒋关鲁, 邱俊杰, 等. 整体刚性面板加筋土挡墙振动台模型试验研究[J]. 岩土力学, 2019, 40(3): 998-1004.
XU Peng, JIANG Guanlu, QIU Junjie, et al. Shaking table tests on reinforced soil retaining walls with full-height rigid facing [J]. Rock and Soil Mechanics, 2019, 40(3): 998-1004.
[19] Xu P, Hatami K, Jiang G. Study on seismic stability and performance of reinforced soil walls using shaking table tests[J]. Geotextiles and Geomembranes, 2020, 48(1): 82-97.
[20] Ding G Y, Zhou L, Wang J, et al. Shaking table tests on gravel slopes reinforced by concrete canvas[J]. Geotextiles and Geomembranes, 2020, 48(4): 539-545.
[21] 王丽艳, 李劲松, 陶云翔, 等. 废弃钢渣回填土工格栅加筋挡土墙的抗震性能振动台试验[J]. 中国公路学报, 2021, 34(1): 35-46.
WANG Liyan, LI Jinsong, TAO Yunxiang. et al. Shaking Table Tests on Seismic Behavior of Geogrid-reinforced Retaining Wall with Waste Steel Slag Backfill [J]. China Journal of Highway and Transport, 2021, 34(1): 35-46.
[22] Panah A K, Eftekhari Z. Shaking table tests on polymeric-strip reinforced-soil walls adjacent to a rock slope[J]. Geotextiles and Geomembranes, 2021, 49(3): 737-756.
[23] 杨长卫, 张建经, 陈强, 等. 加筋重力式挡土墙抗震设计方法研究[J]. 土木工程学报, 2015, 48(8): 77-85.
YANG Changwei, ZHANG Jianjing, CHEN Qiang, et al. Research on aseismic design of reinforced gravity retaining wall [J]. China Civil Engineering Journal, 2015, 48(8): 77-85.
[24] Hardin B O, Drnevich V P. Shear modulus and damping in soils: Design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667–692.
[25] Wood DM. Geotechnical modeling[M]. London: Taylor & Francis Group, 2004.
[26] Sabermahani M, Ghalandarzadeh A, Fakher A. Experimental study on seismic deformation modes of reinforced-soil walls[J]. Geotextiles and Geomembranes, 2009, 27(2): 121-136.
[27] Psyrras N, Sextos A, Crewe A, et al. Physical Modeling of the Seismic Response of Gas Pipelines in Laterally Inhomogeneous Soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(5): 04020031.
[28] El-Emam M M, Bathurst R J. Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls[J]. Geotextiles and Geomembranes, 2007, 25(1): 33-49.
[29] Veletsos A S, Younan A H. Dynamic response of cantilever retaining walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(2): 161-172.
[30] Yazdandoust M. Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test[J]. Soil Dynamics and Earthquake Engineering, 2017, 97: 216-232.
[31] Safaee A M, Mahboubi A, Noorzad A. Experimental investigation on the performance of multi-tiered geogrid mechanically stabilized earth (MSE) walls with wrap-around facing subjected to earthquake loading[J]. Geotextiles and Geomembranes, 2021, 49(1): 130-145.
[32] Nakajima S, Hong K, Mulmi S, et al. Study on seismic performance of geogrid reinforced soil retaining walls and deformation characteristics of backfill soil[C]. LI Guangxin, CHEN Yunmin, Tang Xiaowu. Proceedings of the 4th Asian Regional Conference on Geosynthetics. Shanghai: Springer, 2008. 211-215.
[33] Munoz H, Tatsuoka F, Hirakawa D, et al. Dynamic stability of geosynthetic-reinforced soil integral bridge[J]. Geosynthetics International, 2012, 19(1): 11-38.
[34] Nakamura S. Reexamination of Mononobe-Okabe Theory of Gravity Retaining Walls Using Centrifuge Model Tests[J]. Soils and Foundations, 2006, 46(2): 135-146.
[35] 蒋良潍, 姚令侃, 吴伟, 等. 传递函数分析在边坡振动台模型试验的应用探讨[J]. 岩土力学, 2010, 31(5): 1368-1374.
JIANG Liangwei, YAO Lingkan, WU Wei, et al. Transfer function analysis of earthquake simulation shaking table model test of side slopes[J]. Rock and Soil Mechanics, 2010, 31(5): 1368-1374.
[36] 薛建阳, 许丹, 任国旗, 等. 穿斗式木结构民居模拟地震振动台试验研究[J]. 建筑结构学报, 2019, 40(4): 123-132.
XUE Jianyang, XU Dan, REN Guoqi, et al. Earthquake simulation shaking table test of column-and-tie wooden structure dwellings [J]. Journal of Building Structures, 2019, 40(4): 123-132.
[37] Yang K-H, Hung W-Y, Kencana E Y. Acceleration-Amplified Responses of Geosynthetic-Reinforced Soil Structures with a Wide Range of Input Ground Accelerations[C]. Geo-Congress 2013. Geotechnical Special Publication, GSP, 2013. 1178-1187.
[38] Koseki J, Tatsuoka F, Munaf Y, et al. A modified procedure to evaluate active earth pressure at high seismic loads[J]. Soils and Foundations, 1998, Special Issue on Geotechnical Aspect  of the January 17 1995 Hyogoken-Nambu Earthquake(2): 209-216.

PDF(3825 KB)

Accesses

Citation

Detail

段落导航
相关文章

/