针对某型无人直升机共轴对转主减齿轮箱设计,采用集中参数法建立该齿轮箱中多级斜齿轮传动系统二十五自由度动力学模型,模型中考虑了时变啮合刚度、轴承支承刚度、传动轴扭转刚度以及啮合误差的影响。分析了输入转速和高速级齿轮齿面剥落缺陷尺度、位置对传动系统动态特性的影响规律。研究表明,上下旋翼轴齿轮副动态啮合力波动较大,上旋翼轴齿轮副动态啮合力波动幅度是下旋翼齿轮副的1.7倍;随着转速增大,各级齿轮副动态响应中的二倍输入级啮合频率的幅值提升最显著;当高速级齿轮齿面出现剥落缺陷,啮合频率附近会出现边频带,振动冲击随着缺陷尺寸的增大而增大;在不同的缺陷位置中,位于双齿啮合区与三齿啮合区交界位置,缺陷产生的振动冲击幅值最大。研究结论为无人直升机共轴对转主减齿轮箱的减振降噪,故障诊断提供了理论参考。
关键词:共轴对转;齿轮传动;集中参数法;剥落缺陷;动力学
Abstract
Aiming at the design of a coaxial counter-rotating main reduction gearbox for a certain type of unmanned helicopter, a 25-degree-of-freedom dynamic model of the multi-stage helical gear transmission system in the gearbox was established by using the lumped parameter method. The effects of time-varying meshing stiffness, bearing support stiffness, torsional stiffness of the transmission shaft, and meshing error were considered. The influence laws of the input speed and the size and position of tooth surface spalling defect located at the high speed stage gear on the dynamic characteristics of the system was analyzed. The results showed that the dynamic meshing force of the upper and lower rotor shaft gear pairs fluctuate greatly and the degree of dynamic meshing force fluctuation of the upper rotor shaft gear pair is 1.7 times that of the lower rotor gear pair. As the speed raise, the amplitude of the double input stage meshing frequency in the dynamic response of the gear pairs at all levels have the most significant increased. When the high-speed gear tooth surface has a spalling defect, the sidebands will appear near the meshing frequency, and the vibration impact will increase with the increase of the defect size. Among the different defect positions, it is located at the junction of the double-tooth meshing area and the three-tooth meshing area where the vibration shock peak value is the largest. The conclusions provide theoretical references for the vibration reduction and noise reduction of the unmanned helicopter coaxial contra-rotating main reduction gearbox and the fault diagnosis.
Key words: coaxial contra-rotating; gear transmission; lumped parameter method; spalling defect; dynamics
关键词
共轴对转 /
齿轮传动 /
集中参数法 /
剥落缺陷 /
动力学
{{custom_keyword}} /
Key words
coaxial contra-rotating /
gear transmission /
lumped parameter method /
spalling defect /
dynamics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈铭. 共轴双旋翼直升机的技术特点及发展 [J]. 航空制造技术,2009(17):26-31.
CHEN Ming. Technology characteristic and development of coaxial rotor helicopter [J]. Aeronautical Manufacturing Technology, 2009(17):26-31.
[2] 倪德,李苗苗,胡志安,等. 共轴反转直升机传动系统构型现状[J]. 南京航空航天大学学报,2021, 53(02):226-235.
NI De,LI Miaomiao,HU Zhian,et al. Research status of transmission system configuration of coaxial reversal helicoper [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021,53(02):226-235.
[3] 郭家舜,王三民,刘海霞. 某新型直升机传动系统弯-扭耦合振动特性研究[J]. 振动与冲击,2009, 28(10):132-136.
GUO Jiashun, WANG Sanming, LIU Haixia. Lateral-torsional coupled vibration characteristics of transmission ofa new type helicopter[J]. Journal of Vibration and Shock,2009, 28(10):132-136.
[4] LYU Kehong, TAN Xiaodong, LIU Guanjun, et al. Sensor selection of helicopter transmission systems based on physical model and sensitivity analysis [J]. Chinese Journal of Aeronautics, 2014, 27(3).
[5] 林何,王三民,董金城. 多激励下某直升机传动系统动载特性[J]. 航空动力学报,2015, 30(01):219-227.
LIN He, WANG Sanmin, DONG Jincheng. Dynamic characteristics under various excitations for a helicopter transmission system. Journal of Aerospace Power, 2015, 30(01):219-227.
[6] CHEN Yuan, ZHU Rupeng, XIONG Yeping, et al. Analysis on natural characteristics of four-stage main transmission system in three-engine helicopter [J]. Journal of Vibroengineering, 2017, 12.
[7] CHEN Yuan, ZHU Rupeng, XIONG Yeping, et al. Influence of shaft torsional stiffness on natural characteristics of four-stage main transmission system in three-engine helicopter [J]. Journal of Vibroengineering, 2018, 20(5).
[8] 许华超,秦大同,刘长钊,等. 计入结构柔性的直升机主减速器振动特性分析[J]. 航空动力学报,2019, 34(05):1020-1028.
XU Huachao, QIN Datong, LIU Changzhao, et al. Vibration characteristics analysis for helicopter main gearbox considering strutural flexibility [J]. Journal of Aerospace Power, 2019, 34(05):1020-1028.
[9] 蒋函成,魏静,张爱强,等. 某直升机主减传动系统振动能量传递特性研究[J]. 振动与冲击,2021, (07):95-104.
JIANG Hancheng, WEI Jing, ZHANG Aiqiang, et al. Vibration energy transfer characteristics of main reducer transmission system of a helicopter [J]. Journal of Vibration and Shock, 2021, (07):95-104.
[10] MENG Zong, SHI Guixia, WANG Fulin. Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness [J]. Mechanism and Machine Theory, 2020, 148(5).
[11] FAN Lei, WANG Shaoping, WANG Xingjian, et al. Nonlinear dynamic modeling of a helicopter planetary gear train for carrier plate crack fault diagnosis [J]. Chinese Journal of Aeronautics, 2016, 29(3).
[12] WAN Zhiguo, CAO Hongrui, ZI Yanyang, et al. Mesh stiffness calculation using an accumulated integral potential energy method and dynamic analysis of helical gears [J]. Mechanism and Machine Theory, 2015, 92
[13] 王鑫,徐玉秀,武宝林. 齿轮传动系统中行星轮断齿故障特征分析[J]. 振动与冲击,2016, 35(21):81-86.
WANG Xin, XU Yuxiu, WU Baolin. Chipping fault feature analysis for planetary gear in a gearbox transmission system [J]. Journal of Vibration and Shock, 2016, 35(21):81-86.
[14] JIANG Hanjun, LIU Fuhao. Mesh stiffness modelling and dynamic simulation of helical gears with tooth crack propagation [J]. Meccanica, 2020, 55(1215-1236).
[15] JIANG Hanjun, LIU Fuhao. Dynamic features of three-dimensional helical gears under sliding friction with tooth breakage [J]. Engineering Failure Analysis, 2016, 70.
[16] JIANG Fei, DING Kang, HE Guolin, et al. Vibration fault features of planetary gear train with cracks under time-varying flexible transfer functions [J]. Mechanism and Machine Theory, 2021, 158.
[17] 林腾蛟,郭松龄,赵子瑞,等. 裂纹故障对斜齿轮时变啮合刚度及振动响应的影响分析[J]. 振动与冲击,2019, (16):29-36.
Lin Tengjiao, GUO Songling, ZHAO Zirui, et al. Influence of crack faults on time-varying mesh stiffness and vibration response of helical gears [J]. Journal of Vibration and Shock, 2019, (16):29-36.
[18] 李国彦,沈奇,牛蔺楷,等. 内齿圈裂纹扩展对复合两级行星轮系均载特性的影响研究[J]. 振动与冲击,2021, (12):275-282.
LI Guoyan, Shen Qi, Niu Linkai, et al. Influence of a ring gear with crack propagation on load sharing behaviors of compound planetary gear set [J]. Journal of Vibration and Shock, 2021, (12):275-282.
[19] MA Hui, SONG Rongze, PANG Xu, et al. Time-varying mesh stiffness calculation of cracked spur gears [J]. Engineering Failure Analysis, 44(9) (2014) 179-194.
[20] CHAARI F, FAKHFAKH T, HADDAR M. Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness [J], European Journal of Mechanics - A/Solids, 28(3) (2009) 461-468.
[21] 刘文,李锐,张晋红,等. 斜齿轮时变啮合刚度算法修正及影响因素研究[J].湖南大学学报(自然科学版),2018, 45(02):1-10.
LIU Wen, LI Rui, ZHANG Jinhong, et al. Study on correction algorithm of time-varying mesh stiffness of helical gears and its influcencing factors [J]. Journal of Hunan University(Natural Sciences), 2018, 45(02):1-10.
[22] HAN Lin, QI Houjun. Influences of tooth spalling or local breakage on time-varying mesh stiffness of helical gears [J]. Engineering Failure Analysis, 2017, 79.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}