调节阀内非定常空化压力脉动特性分析

刘秀梅1,谢永伟1,李贝贝1,贺杰2,陈劲松1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 282-288.

PDF(2119 KB)
PDF(2119 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 282-288.
论文

调节阀内非定常空化压力脉动特性分析

  • 刘秀梅1,谢永伟1,李贝贝1,贺杰2,陈劲松1
作者信息 +

Transient cavitation pressure fluctuation characteristics in regulating valve

  • LIU Xiumei1, XIE Yongwei1, LI Beibei1, HE Jie2, CHEN Jinsong1
Author information +
文章历史 +

摘要

基于计算流体动力学方法,数值研究了液压调节阀内非定常流动及其压力脉动特性. 通过对近壁面的压力信号进行频谱分析,讨论了空化形态的变化过程与壁面压力波动之间的关系. 结果表明:调节阀内云状空穴变化呈现出准周期性的发展过程,空化频率为565Hz,其空化变化过程包括:附着型空穴生长、附着型空穴断裂和脱落以及游离型空穴生长和溃灭. 空穴尾部近壁面处的逆压力梯度是引起反向射流的主要原因,反向射流与主流相切形成漩涡,促使附着型空穴脱落. 此外,空穴发展变化也对流道内压力脉动产生影响,阀内不同截面上的平均压力变化具有相同的主导频率,且该频率与附着型空穴非定常准周期生长、断裂、脱落频率基本吻合.
关键词  调节阀;非定常空化流动;反向射流;压力脉动;数值模拟

Abstract

The unsteady flow in a hydraulic regulating valve was numerically studied based on a computational fluid dynamics (CFD) method. Spectral analysis was conducted for pressure signals, and the correlation between the unsteady cavity behaviors and the pressure fluctuations was discussed. The results showed that a typical quasi-periodic process of cloud cavitation development is characterized by the process of attached cavity growth, attached cavity shedding, and the growth and collapse of cloud cavities. The periodic frequency of cavitation is 565Hz. The pressure gradient at the end of the attached cavity near the wall is the main cause of the reverse jet, and then the vortex is formed to make the attached cavity shedding. At the same time, the development of shedding also affects the pressure pulsation in the flow passage. The average pressure variation in different sections of the valve has the same dominant frequency, and the frequency is basically consistent with the unsteady quasi-periodic breaking and shedding frequency of the shedding.
Key words  regulating valve; unsteady cavitation flow; re-entrant jet; pressure fluctuation;  numerical simulation

关键词

调节阀 / 非定常空化流动 / 反向射流 / 压力脉动 / 数值模拟

Key words

 regulating valve / unsteady cavitation flow / re-entrant jet / pressure fluctuation;  / numerical simulation

引用本文

导出引用
刘秀梅1,谢永伟1,李贝贝1,贺杰2,陈劲松1. 调节阀内非定常空化压力脉动特性分析[J]. 振动与冲击, 2022, 41(19): 282-288
LIU Xiumei1, XIE Yongwei1, LI Beibei1, HE Jie2, CHEN Jinsong1. Transient cavitation pressure fluctuation characteristics in regulating valve[J]. Journal of Vibration and Shock, 2022, 41(19): 282-288

参考文献

[1] 张孝石. 水下航行体空化流动与压力脉动特性研究[D]: 哈尔滨工业大学, 2017.
[2] Huang Biao, Qiu Sicong, Li Xiangbin, et al. A review of transient flow structure and unsteady mechanism of cavitating flow[J]. Journal of Hydrodynamics, 2019,31(3): 429-444.
[3] 张婧, 徐栋梁, 许文强. 考虑空化效应的水下爆炸舰船结构响应研究[J]. 华中科技大学学报(自然科学版), 2020,48(08): 115-120+132.
ZHANG Jing,XU Dongliang,XU Wenqiang.Research on response of ship structure subjected to underwater explosion cavitation[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition) , 2020,48(8): 115-120.
[4] 洪锋, 袁建平, 周帮伦. 空泡半径非线性变化的空化模型及应用[J]. 华中科技大学学报(自然科学版), 2015,43(10): 15-20.
HONG Feng,YUAN Jianping,ZHOU Banglun. Cavitation model considering non-linear variation of bubble radius and its application[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition) , 2015,43(10): 15-20.
[5] Wang Luyan, Ji Bin, Cheng Huaiyu, et al. One-dimensional/three-dimensional analysis of transient cavitating flow in a venturi tube with special emphasis on cavitation excited pressure fluctuation prediction[J]. Science China-technological Sciences, 2020,63(2): 223-233.
[6] 韩亚东, 谭磊. 文丘里管空化流动的试验研究及动力学模态分解[J]. 机械工程学报, 2019,55(18): 173-179.
HAN Yadong,TAN Lei.Experiment and dynamic mode decomposition of cavitating flow in Venturi[J].Journal of Mechanical Engineering, 2019,55(18): 173-179.
[7] Xu Shuangjie, Wang Jiong, Cheng Huaiyu, et al. Experimental Study of the Cavitation Noise and Vibration Induced by the Choked Flow in a Venturi Reactor[J]. Ultrasonics Sonochemistry, 2020,67: 105183.
[8] Liu Ming, Tan Lei, Liu Yabin, et al. Large eddy simulation of cavitation vortex interaction and pressure fluctuation around hydrofoil ALE 15[J]. Ocean Engineering, 2018,163.
[9] Wang Changchang, Wang Guoyu, Huang Biao. Dynamics of unsteady compressible cavitating flows associated with the cavity shedding[J]. Ocean Engineering, 2020,209: 107025.
[10] Long Xinping, Cheng Huaiyu, Ji Bin, et al. Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method[J]. Ocean Engineering, 2017,137: 247-261.
[11] Wang Changchang, Huang Biao, Wang Guoyu, et al. Unsteady pressure fluctuation characteristics in the process of breakup and shedding of sheet/cloud cavitation[J]. International Journal of Heat & Mass Transfer, 2017,114: 769-785.
[12] 王畅畅, 王国玉, 黄彪, et al. 可压缩空化流动空穴演化及压力脉动特性实验研究[J]. 力学学报, 2019,51(05): 1296-1309.
WANG Changchang,WANG Guoyu,HUANG Biao,et al.Experimental investigation of cavitation characteristic and dynamics in comperssible turbulent cavitating flows[J].Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5): 1296-1309.
[13] 陈广豪. 附着型非定常空化流体动力特性与机理研究[D]: 北京理工大学, 2016.
[14] Jiakai Zhu, Huangjun Xie, Kesong Feng, et al. Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube[J]. International Journal of Heat & Mass Transfer, 2017,112: 544-552.
[15] 龙新平, 王炯, 左丹, et al. 文丘里管不同空化阶段空化不稳定特性的试验研究[J]. 机械工程学报, 2018,54(02): 209-215.
LONG Xinping,WANG Jiong,ZUO Dan,et al.Experimental investigation of the instability of cavitation in Veturi tube under different cavitation stage[J].Journal of Mechanical Engineering, 2018,54(2): 209-215.
[16] Dastane Gaurav G, Thakkar Harsh, Shah Rushabh, et al. Single and multiphase CFD simulations for designing cavitating venturi[J]. Chemical Engineering Research & Design, 2019,149: 1-12.
[17] Pelz P. F., Keil T., Groß T. F. The transition from sheet to cloud cavitation[J]. Journal of Fluid Mechanics, 2017,817: 439-454.
[18] Yuning Zhang, Feipeng Chen, Yuning Zhang, et al. Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle[J]. Experimental Thermal and Fluid ence (EXP THERM FLUID ), 2018,98: S0894177718302218-.
[19] Barwey Shivam, Ganesh Harish, Hassanaly Malik, et al. Data-based analysis of multimodal partial cavity shedding dynamics[J]. Experiments in Fluids, 2020,61(4).
[20] Liu X. M., Wu Z. H., Li B. B., et al. Influence of inlet pressure on cavitation characteristics in regulating valve[J]. Engineering Applications of Computational Fluid Mechanics, 2020,14(1): 299-310.
[21] Yuan C., Song J. C., Liu M. H. Investigation of flow dynamics and governing mechanism of choked flow for cavitating jet in a poppet valve[J]. International Journal of Heat and Mass Transfer, 2019,129: 113-131.
[22] Zheng Z. J., Ou G. F., Ye H. J., et al. Investigation on failure process and structural optimization of a high pressure letdown valve[J]. Engineering Failure Analysis, 2016,66: 223-239.
[23] Qiu T., Dai H. F., Lei Y., et al. Investigation of the unsteady-flow characteristics in the control valve of a diesel engine unit pump fuel system[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2017,231(7): 927-940.
[24] 陈广豪, 王国玉, 黄彪. 云状空化的非定常流体动力特性[J]. 船舶力学, 2016,20(Z1): 1-9.
CHEN Guanghao,WANG Guoyu,HUANG Biao. Unsteady hydrodynamics of cloud cavitating flows in a convergent-divergent channel [J].Journal of Ship Mechanics, 2016,20(Suppl.1): 1-9.

 

PDF(2119 KB)

Accesses

Citation

Detail

段落导航
相关文章

/