针对大跨屋盖结构表面风压宽频谱特性与极值风压估计方法问题,本文提出了一种基于带宽修正的高斯转化法求解非高斯风压峰值因子。结合大跨屋盖结构风洞试验,采用本文提出的方法和现有极值风压评估方法对大跨屋盖结构表面极值风压开展了系统的对比验证研究。结果表明:高斯峰值因子法估算的大跨屋盖结构表面风压峰值因子明显偏离了非高斯风压的峰值因子;忽略带宽参数的Hermite矩模型高估了非高斯风压的峰值因子;相对于修正带宽的Hermite矩模型和目标概率法,本文提出的修正带宽高斯转化法与Sadek-Simiu法估计的大跨屋盖结构风压峰值因子更为准确,与试验观测值整体上最为接近,但本文提出的修正带宽高斯转化法得到的结果误差及离散性均较小,能够高效合理地提供大跨屋盖结构表面非高斯风压峰值因子。
关键词:大跨屋盖结构;非高斯风压;带宽参数;峰值因子;风洞试验
Abstract
This study proposed a Translation Process Method (TPM) with modified bandwidth for the broad-band wind pressure and the extreme value estimate method. Based on the wind tunnel experiments, the peak factors of wind pressures on the large-scale roof structure were systematically studied with the proposed TPM and available extreme value estimate methods. The results show that the peak factor of wind pressures estimated by the extreme value distribution of Gaussian process significantly deviated from those obtained by the estimate methods for non-Gaussian process; the Hermite moment method neglecting the bandwidth parameter overestimated the peak factor of non-Gaussian wind pressures; as compared with the Hermite moment method and the target probability method with modified bandwidth parameter, the Sadek-Simiu method and TPM with modified bandwidth estimated the peak factors of wind pressures on the large-scale roof structure more accurately, which were in better correspondence with the observed extreme values from the experiments; meanwhile, the discrepancies and skewness of the estimated peak factors by the method proposed in this study were the smallest; therefore, the proposed TPM with modified bandwidth could efficiently and reasonably estimate the extreme values of non-Gaussian wind pressures on the large-scale roof structure.
Key words: Large-scale roof structure; non-Gaussian wind pressure; peak factor; wind tunnel test; bandwidth parameter
关键词
大跨屋盖结构 /
非高斯风压 /
带宽参数 /
峰值因子 /
风洞试验
{{custom_keyword}} /
Key words
Large-scale roof structure /
non-Gaussian wind pressure /
peak factor /
wind tunnel test /
bandwidth parameter
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈伏彬, 李秋胜, 傅继阳, 谢壮宁. 大跨屋盖风荷载的频域特性试验研究[J]. 振动与冲击, 2012, 31(005):111-117.
CHEN Fu-bin, LI Qiu-sheng, FU Ji-yang, XIE Zhuang-ning. Frequency domain characteristics of wind loads on a long span building roof [J]. Journal of Vibration and Shock, 2012, 31(005):111-117. (in Chinese)
[2] 陈波, 李明, 杨庆山. 大跨平屋盖的多目标等效静风荷载研究[J]. 振动与冲击, 2013, 32(024):22-27.
CHEN Bo, LI Ming, YANG Qing-shan. Equivalent static wind loads of multi-targets for long span plane roofs [J]. Journal of Vibration and Shock, 2013, 32(024):22-27. (in Chinese)
[3] 叶继红,侯信真.大跨屋盖脉动风压的非高斯特性研究[J].振动与冲击,2010,29(7):9-15.
YE Ji-hong, HOU Xin-zhen. Non-Gaussian features of fluctuating wind pressures on long span roofs [J]. Journal of Vibration and Shock, 2010, 29(7):9-15. (in Chinese)
[4] Liu M, Chen X Z, Yang Q S. Characteristics of dynamic pressures on a saddle type roof in various boundary layer flows [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 150(5): 1-14.
[5] Yang Q S, Chen X Z, Liu M. Bias and sampling errors in estimation of extremes of non-Gaussian wind pressures by moment-based translation process models [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2019,186:214-233.
[6] Song J, Xu W, Hu G, Liang S G, Tan J. Non-Gaussian properties and their effects on extreme values of wind pressure on the roof of long-span structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184:106-115.
[7] Holmes J D. Wind action on glass and Brown's integral [J]. Engineering Structures, 1985, 7(4):226-230.
[8] Davenport A G. Note on the distribution of the largest value of a random function with application to gust loading[J]. Proceedings of the Institution of Civil Engineers, 1964, 28(2): 187-195.
[9] Winterstein S R. Nonlinear vibration models for extremes and fatigue [J]. Journal of Engineering Mechanics, ASCE, 1988, 114(10): 1772―1790. 2012. (in Chinese).
[10] Tognarelli M A, Zhao J, K. B. Rao and Kareem A. Equivalent statistical quadratization and cubicization for nonlinear systems [J]. Journal of Engineering Mechanics,1997, 123(5): 512-523.
[11] Winterstein S R, Ude T C, Kleiven G. Springing and slow-drif responses: Predicted extremes and fatigue vs.simulation [C]. Cambridge, Massachusetts:7th International Conference on the Behaviour of Off-shore Structures, 1994, 3:1―15.
[12] Sadek F E S. Peak non-Gaussian wind effects for database- assisted low-rise building design [J]. Journal of Engineering Mechanics, 2002,128(5) : 530-539.
[13] Grigoriu M. Applied non-Gaussian processes [M]. Englewood Cliffs,NJ:PTR Prentice Hall,1995:42-55.
[14] 吴太成.大跨屋面风荷载及其风振响应研究[D]. 西南交通大学, 2005.
Wu Tai-cheng. Wind load and wind vibration response of long span roof [D]. Southwest Jiao tong University, 2005.
[15] Yang L., Gurley K.R, Prevatt D. O. Probabilistic modeling of wind pressure on low-rise building [C] // Proceedings of 13th International Conference on Wind Engineering. Amsterdam, Holland: International Wind Engineering Association Press, 2011: 1053-1062.
[16] 李寿科,李寿英,陈政清,孙洪鑫.围护结构非高斯风压极值估计的改进Hermite 峰值因子法[J].建筑结构学报,2015, 36(4):112―118.
LI S.K., LI S.Y., Chen Z.Q., SUN H.X. Prediction of non-Gaussian wind pressure extreme value on claddings with modified Hermite peak factor method [J]. Journal of Building Structures, 2015, 36(4): 112―118. (in Chinese)
[17] Tunna J M. Fatigue life prediction for gaussian random loads at the design stage[J]. Fatigue & Fracture of Engineering Materials & Structures, 1989, 9(3):169-184.
[18] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范[M]. 中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Load Code for the Design of Building Structures[M]. China Building Industry Press.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}