基于非因果滤波和零点法的近断层脉冲型地震动识别方法

冯俊,赵伯明,赵天次

振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 71-79.

PDF(2984 KB)
PDF(2984 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (19) : 71-79.
论文

基于非因果滤波和零点法的近断层脉冲型地震动识别方法

  • 冯俊,赵伯明,赵天次
作者信息 +

Near-fault pulse-like ground motion identification method based on non-causal filtering and zero- point method

  • FENG Jun, ZHAO Boming, ZHAO Tianci
Author information +
文章历史 +

摘要

基于Butterworth非因果低通滤波器和零点法提取地震动速度时程中的脉冲信号,并以脉冲信号中的极值点数量确定滤波器的截止频率。选取666条速度峰值大于30 cm/s的近断层地震记录作为训练数据,以脉冲信号的相对能量和幅值作为量化指标,给出了单脉冲型和双脉冲型地震动的识别标准。还提出了以最显著脉冲信号的持续时间为依据的脉冲周期计算方法。通过与既有方法比较表明:基于Butterworth非因果低通滤波器和零点法的脉冲提取方法的拟合效果较好,可用于提取非对称脉冲信号和双脉冲信号;提出的定量识别标准可以有效地识别单脉冲型和双脉冲型地震动;所提的脉冲周期计算方法可以用于确定单脉冲型和双脉冲型地震动的脉冲周期。
关键词:近断层地震动;脉冲型地震动;速度脉冲;脉冲周期;定量识别

Abstract

An algorithm for extracting the velocity pulse signal was proposed based on the Butterworth non-causal low-pass filter and the zero-point method, and the cut-off frequency of the filter is determined by the number of extreme points in the pulse signal. 666 records with peak ground velocities above 30 cm/s were utilized as training data. The identification criteria of single-pulse-like and double-pulse-like records based on the relative energy and amplitude of pulse signals were proposed. The pulse period was calculated by the duration of the most effective pulse. The comparison with the reference methods shows that the proposed pulse extraction method has a high fitting effect and can be used to extract asymmetric pulse signal and double-pulse signal; The proposed quantitative identification criteria can effectively identify single-pulse-like and double-pulse-like ground motions; The proposed pulse period calculation method can calculate the pulse periods of s single-pulse-like and double-pulse-like records.
Key words: near-fault ground motion; pulse-like ground motion; velocity pulse; pulse period; quantitative identification

关键词

近断层地震动 / 脉冲型地震动 / 速度脉冲 / 脉冲周期 / 定量识别

Key words

 near-fault ground motion / pulse-like ground motion / velocity pulse / pulse period / quantitative identification

引用本文

导出引用
冯俊,赵伯明,赵天次. 基于非因果滤波和零点法的近断层脉冲型地震动识别方法[J]. 振动与冲击, 2022, 41(19): 71-79
FENG Jun, ZHAO Boming, ZHAO Tianci. Near-fault pulse-like ground motion identification method based on non-causal filtering and zero- point method[J]. Journal of Vibration and Shock, 2022, 41(19): 71-79

参考文献

[1]  Somerville P G, Smith N F, Graves R W, et al. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismological Research Letters, 1997, 68(1): 199-222.
[2]  Spudich P, Chiou B S J, Graves R W, et al. A formulation of directivity for earthquake sources using isochrone theory[R]. United States Geological Survey Open File Report 2004-1268, Reston, VA, 2004.
[3]  刘启方, 袁一凡, 金星, 等. 近断层地震动的基本特征[J]. 地震工程与工程振动, 2006, 26(1): 1‐10.
LIU Qifang, YUAN Yifan, JIN Xing, et al. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(1): 1-10.
[4]  Hall J F, Heaton T H, Halling M W, et al. Near‐source ground motion and its effects on flexible buildings[J]. Earthquake Spectra, 1995, 11(4): 569-605.
[5]  Alavi B, Krawinkler H. Effects of near-fault ground motions on frame structures[R]. Technical Report of Blume Center Report 138, California, Stanford, 2001.
[6]  Mavroeidis G P, Dong G, Papageorgiou A S. Near-fault ground motions, and the response of elastic and inelastic single‐degree‐of freedom (SDOF) systems[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(9): 1023-1049.
[7]  江义, 杨迪雄, 李刚. 近断层地震动向前方向性效应和滑冲效应对高层钢结构地震反应的影响[J]. 建筑结构学报, 2010(9): 103-110.
JIANG Yi, YANG Dixiong, LI Gang. Effects of forward directivity and fling step of near-fault ground motions on seismic responses of high-rise steel structure[J]. Journal of Building Structures, 2010(9): 103-110.
[8]  贾俊峰, 杜修力, 韩强. 近断层地震动特征及其对工程结构影响的研究进展[J]. 建筑结构学报, 2015, 36(1): 1-12.
JIA Junfeng, DU Xiuli, HAN Qiang. A state-of-the-art review of near-fault earthquake ground motion characteristics and effects on engineering structures[J]. Journal of Building Structures, 2015, 36(1): 1-12.
[9]  夏春旭, 柳英洲, 柳春光. 桥梁墩柱在近断层水平多脉冲地震动作用下响应特征分析[J]. 振动与冲击, 2017, 36(02): 95-100.
XIA Chunxu, LIU Yingzhou, LIU Chunguang. Characteristic response analysis of bridge piers under multi-pulse near-fault earthquake excitation[J]. Journal of Vibration and Shock, 2017, 36(02): 95-100.
[10]  Baker J W. Quantitative classification of near‐fault ground motions using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 97(5): 1486-1501.
[11]  Kardoutsou V, Ioannis T, Psycharis I N. A new pulse indicator for the classification of ground motions[J]. Bulletin of the Seismological Society of America, 2017, 107(3).
[12]  Ertuncay D, Costa G. An alternative pulse classification algorithm based on multiple wavelet analysis[J]. Journal of Seismology, 2019, 23(4): 929-942.
[13]  Zhai C H, Chang Z W, Li S, et al. Quantitative identification of near‐fault pulse‐like ground motions based on energy[J]. Bulletin of the Seismological Society of America, 2013, 103(5): 2591-2603.
[14]  Zhao G C, Xu L J, Xie L L. A simple and quantitative algorithm for identifying pulse‐like ground motions based on zero velocity point method[J]. Bulletin of the Seismological Society of America, 2016, 106(3): 1011-1023.
[15]  杨成, 刘佳欣, 常志旺, 等. 基于本征模态函数重构的近断层地震动识别与响应谱验证[J]. 建筑结构学报, 2019, 40(11): 230-239.
YANG Cheng, LIU Jiaxin, CHANG Zhiwang, et al. Identification and spectral performance verification of velocity near-fault ground motions based on IMF reconstruction[J]. Journal of Building Structures, 2019, 40(11): 230-239.
[16]  Chen X Y, Wang D S, Zhang R. Identification of pulse periods in near-fault ground motions using the hht method[J]. Bulletin of the Seismological Society of America, 2019, 109(6): 2384-2398.
[17]  Liu Z, Li X, Zhang Z. Quantitative Identification of Near-Fault Ground Motions Based on Ensemble Empirical Mode Decomposition[J]. KSCE Journal of Civil Engineering, 2020, 24(10): 922-930.
[18]  Zhai C H, Li C, Kunnath S, et al. An efficient algorithm for identifying pulse‐like ground motions based on significant velocity half‐cycles[J]. Earthquake Engineering & Structural Dynamics, 2017, 47(3): 757-771.
[19]  Dickinson B W, Gavin H P. Parametric statistical generalization of uniform‐hazard earthquake ground motions[J]. Journal of Structural Engineering, 2011, 137(3): 410-422.
[20]  李英民, 赵晨晓, 谭潜. 基于HHT地震动分量分离的长周期地震动界定方法[J]. 振动与冲击, 2018(7): 164-171.
LI Yingmin, ZHAO Chenxiao, TAN Qian. Classification method for long period ground motions based on component decomposition with HHT[J]. Journal of Vibration and Shock, 2018(7): 164-171.
[21]  大崎顺彦. 地震动的谱分析入门[M]. 北京: 地震出版社,2008.
[22]  周宝峰, 温瑞智, 谢礼立. 非因果滤波器在强震数据处理中的应用[J]. 地震工程与工程振动, 2012, 32(02): 25-34.
ZHOU Baofeng, WEN Ruizhi, XIE Lili. Acausal filter in the strong motion records processing[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(02): 25-34.
[23]  蒲武川, 薛耀辉, 张孟成. 高通滤波对近场脉冲型地震动位移反应谱的影响[J]. 振动与冲击, 2020, 39(13): 116-124.
 
PU Wuchuan, XUE Yaohui, ZHANG Mengcheng. Effects of high-pass filtering on displacement response spectrum of near-field impulsive ground motion[J]. Journal of Vibration and Shock, 2020, 39(13): 116-124.
[24]  Shahi S K, Baker J W. An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis[J]. Bulletin of the Seismological Society of America, 2011, 101(2): 742–755.
[25]  Li C H; Kunnath S; Zhai C H. Influence of Early-Arriving Pulse-Like Ground Motions on Ductility Demands of Single-Degree-of-Freedom Systems. Journal of Earthquake Engineering, 2018: 1–24.
[26]  Chen X Y, Wang D S. Multi-pulse characteristics of near-fault ground motions. Soil Dynamics and Earthquake Engineering, 2020, 137: 106275.
[27]  Alavi, B, Krawinkler H. Behavior of moment-resisting frame structures subjected to near-fault ground motions[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(1): 687–706.

PDF(2984 KB)

Accesses

Citation

Detail

段落导航
相关文章

/