双稳态余弦梁非线性隔振器的动力学与隔振特性研究

张威1,2,王文波1,李双宝3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 113-122.

PDF(1986 KB)
PDF(1986 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 113-122.
论文

双稳态余弦梁非线性隔振器的动力学与隔振特性研究

  • 张威1,2,王文波1,李双宝3
作者信息 +

Dynamics and isolation performance of a nonlinear vibration isolator with a bistable cosine-shaped beam

  • ZHANG Wei1,2,WANG Wenbo1,LI Shuangbao3
Author information +
文章历史 +

摘要

为了隔离航空器上的低频振动,提出一种具有准零刚度特性的非线性隔振器,其由线性正刚度弹簧并联双稳态余弦梁负刚度元件而成。首先,通过对余弦梁非线性隔振器的静力学分析,给出了隔振器在准零刚度平衡点时的结构参数需要满足的条件。其次,建立谐波力作用下的系统动力学模型,通过未扰系统的分析,得其存在平衡点分岔行为和满足稳定准零刚度的条件。最后,通过数值方法和有限元软件动力学仿真分析扰动系统的隔振性能,得余弦梁非线性隔振器的起始隔振频率。进一步与线性隔振系统相比可知,引入余弦梁的非线性隔振系统有效降低了起始隔振频率。因此,余弦梁非线性隔振器具有优异的低频隔振性能,这为低频非线性隔振器设计提供了理论基础。

Abstract

In order to isolate the low frequency vibrations in aircraft, a quasi-zero stiffness nonlinear vibration isolator is proposed, which is composed of a linear positive stiffness spring in parallel with a bistable cosine-shaped beam with negative stiffness. Firstly, through the static analysis of the cosine-shaped beam nonlinear vibration isolator, the structure parameters of the isolator at the quasi-zero-stiffness equilibrium point are given. Secondly, the dynamical model of a harmonically excited nonlinear vibration isolator with a bistable cosine-shaped beam is established. Through the analysis of the unperturbed system, the existence of bifurcation behavior of equilibrium point and the condition of stable-quasi-zero-stiffness are obtained. Finally, the isolation performance of the cosine-shaped beam nonlinear isolator under the excitation force is analyzed to obtain the initial vibration isolation frequency by using numerical analysis method and Finite Element Analysis(FEA). Moreover, compared with the linear vibration isolation system, it is shown that the initial vibration isolation frequency can be effectively reduced for the proposed quasi-zero stiffness nonlinear vibration isolation with cosine beam. Therefore, the nonlinear vibration isolator with cosine-shaped beam has excellent low frequency vibration isolation performance, which provides a theoretical basis for the optimal design of low frequency nonlinear vibration isolator.

关键词

双稳态余弦梁 / 平衡点分岔 / 起始隔振频率 / 准零刚度

Key words

bistable cosine-shaped beam / equilibrium bifurcation / initial vibration isolation frequency / quasi- zero-stiffness

引用本文

导出引用
张威1,2,王文波1,李双宝3. 双稳态余弦梁非线性隔振器的动力学与隔振特性研究[J]. 振动与冲击, 2022, 41(2): 113-122
ZHANG Wei1,2,WANG Wenbo1,LI Shuangbao3. Dynamics and isolation performance of a nonlinear vibration isolator with a bistable cosine-shaped beam[J]. Journal of Vibration and Shock, 2022, 41(2): 113-122

参考文献

[1] ISO 2631-1, Mechanical vibration and shock-evaluation of human exposure to whole-body vibration-part 1: general requirements. ISO, Switzerland, Geneva. 1997.
[2] 吕玉恒,王庭佛.噪声与振动控制设备及材料选用手册[M].北京:机械工业出版社,1999:203-260.
LU Yu-heng, WANG Ting-fo. Noise and vibration control equipment and material selection manual [M].Beijing: CHINA MACHINE PRESS, 1999:203-260.
[3] 路纯红,白鸿柏.新型超低频非线性被动隔振系统的设计[J].振动与冲击,2011,30(1):234-236.
LU Chun-hong, BAI Hong-bai. A new type nonlinear ultra-low frequency passive vibration isolation system [J]. Journal of Vibration and Shock, 2011,30(1): 234-236.
[4] CARRELLA A, BRENNAN M, WATERS T. Static analysis of a passive vibration isolator with quasi-zero stiffness characteristics [J]. Journal of Sound and Vibration, 2007, 301:678-689.
[5] CARRELLA A, BRENNAN M, WATERS T, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic stiffness [J]. International Journal of Mechanical Sciences, 2012, 55(1):22-29.
[6] CARRELLA A, BRENNAN M, KOVACIC I, et al. On the force transmissibility of a vibration isolator with quasi-zero stiffness [J]. Journal of Sound and Vibration, 2009, 332:707-717.
[7] KOVACIC I, BRENNAN M, WATERS T. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristics [J]. Journal of Sound and Vibration, 2008, 315(3):700-711.
[8] CAO Qing-jie, WIERCIGROCH M, PAVLOVSKAIA E. An archetypal oscillator for smooth and discontinuous dynamics [J]. Physical Review E, 2006, 74:046218.
[9] CAO Qing-jie, XIONG Ye-ping, WIERCIGROCH W. A novel model of dipteran flight mechanism [J]. International Journal of Dynamics & Control, 2013, 1:1-11.
[10] HAN Yan-wei, CAO Qing-jie, CHEN Yu-shu, et al. A novel smooth and discontinuous oscillator with strong irrational nonlinearities [J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2012,55(10): 1832-1843.
[11] CAO Qing-jie, LEGER A. A Smooth and Discontinuous Oscillator Theory, Methodology and Applications [M]. Berlin, Springer, 2017.
[12] HAO Zhi-feng, CAO Qing-jie. A novel dynamical model for GVT nonlinear supporting system with stable quasi-zero stiffness [J]. Journal of Theoretical and Applied Mechanics, 2014, 52(1):199-213.
[13] 董光旭, 罗亚军, 严博,等. 基于正负刚度并联的低频隔振器研究 [J]. 航空学报, 2016, 37(7):2189-2199.
DONG Guang-xu, LUO Ya-jun, YAN Bo, et al. Study on a low frequency vibration isolator based on combined positive and negative stiffness [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2189-2199.
[14] 董光旭, 张希农, 罗亚军,等. 一种磁性并联低刚度隔振器 [J]. 航空动力学报,2016, 31(6):1408-1416.
DONG Guang-xu, ZHANG Xi-nong, LUO Ya-jun, et al. A parallel magnetic low stiffness vibration isolator [J]. Journal of Aerospace Power, 2016, 31(6):1408-1416.
[15] SUN Meng-nan, SONG Gui-qiu, LI Yi-ming, et al. Effect of negative stiffness mechanism in a vibration isolator with asymmetric and high-static-low-dynamic stiffness [J]. Mechanical Systems and Signal Processing, 2019, 124: 388-407.
[16] ZHOU Jia-xi, XIAO Qing-yu, XU Dao-lin, et al. A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform [J]. Journal of Sound and Vibration, 2017, 394: 59-74.
[17] NIU Fu, MENG Ling-shuai, WU Wen-juan, et al. Design and analysis of a quasi-zero stiffness isolator using a slotted conical disk spring as negative stiffness structure [J]. Journal of Vibroengineering,2014,16(4):1392-8716.
[18] MENG Ling-shuai, SUN Jing-gong, WU Wen-juan. Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element [J]. Shock and Vibration, 2015:1-19.
[19] ZHU Heng-jia, YANG J, ZHANG Yun-qing. Modeling and optimization for pneumatically pitch-interconnected suspensions of a vehicle[J]. Journal of Sound and Vibration, 2018, 432:290-309.
[20] 郭怀攀,李昊,陈卫东,等. 基于非对称复合材料层合板的准零刚度隔振系统[J]. 振动与冲击,2018,37(20):222-229.
GUO Huai-pan, LI Hao, CHEN Wei-dong, et al. A quasi-zero-stiffness vibration isolation system based on unsymmetric composite laminate [J]. Journal of Vibration and Shock, 2018, 37(20):222-229.
[21] SADEGHI S, LI Su-yi. Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation [J]. Smart Materials and Structures, 2019, 28: 065006.
[22] PLATUS D L. Negative-stiffness-mechanism vibration isolation systems [J]. Vibration Control in Microelectronics, Optics, and Metrology, 1991, 1619: 44-54.
[23] LIU Xing-tian, HUANG Xiu-chang, HUA Hong-xing. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector [J]. Journal of Sound and Vibration, 2013, 332: 3359-3376.
[24] BENJAMIN A F,DAVID W S,MICHAEL R H,et al. Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems[J].Journal of Vibration and Acoustics,2014,136(3): 1-12.
[25] HUANG Xiu-chang,CHEN Yong,HUA Hong-xing, et al. Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study[J].Journal of Sound and Vibration,2015, 345(4): 178-196.
[26] 任晨辉,杨德庆. 余弦形预制双曲梁非线性隔振器的隔振性能 [J]. 上海交通大学学报, 2019, 53(7):852-859.
REN Chen-hui, YANG De-qing. Performance of the Centrally-Clamped Cosine-Shaped Beam as a Nonlinear Vibration Isolator [J]. Journal of Shanghai Jiaotong University, 2019, 53(7):852-859.
[27] 王云峰,李博,王利桐. 两端固支屈曲梁准零刚度隔振器的微振动隔振性能分析 [J]. 振动与冲击,2018,37(15): 124-129.
WANG Yun-feng, LI Bo, WANG Li-tong. Micro- vibration isolation performance of a clamped-clamped buckled beam quasi-zero- stiffness isolator [J]. Journal of Vibration and Shock, 2018,37(15):124-129.
[28] QIU Jin, LANG J H, SLOCUM A H. A curved-beam bistable mechanism [J].Journal of Microelectro-mechanical Systems, 2004, 13(2): 137-146.
[29] TIMOSHENKO S P, DERE J M.Theory of Elastic Stability [M]. (2nd Edition). New York, McGraw-Hill, 1961:1-3.
[30] 刘延柱,陈立群. 非线性振动 [M]. 北京:高等教育出版社, 2001: 67-83.
LIU Yan-zhu, CHEN Li-qun. Nonlinear Vibration [M]. Beijing: Higher Education Press, 2001: 67-83.

PDF(1986 KB)

824

Accesses

0

Citation

Detail

段落导航
相关文章

/