针对航天器飞轮微振动的低频隔振难题,提出了基于准零刚度机理的多自由度非线性隔振方法。建立基于准零刚度支杆的Stewart隔振平台的动力学模型,通过增量谐波平衡(incremental harmonic balance ,IHB)法分析了支杆刚度、激励力和力矩幅值对隔振性能的影响。在四自由度飞轮线性扰动模型的基础上,建立飞轮和隔振平台的耦合动力学模型,并用数值仿真分析了隔振效果。结果表明:该隔振方法能避免传统线性隔振在低频处的扰动放大现象,提升低频隔振性能,实现飞轮的全转速隔振,并且飞轮角位移响应幅值能满足动量矩矢量的指向精度要求。
Abstract
In order to solve the low-frequency micro-vibration isolation of flywheel in spacecraft, a multi-degree-of-freedom nonlinear vibration isolation method based on quasi-zero-stiffness mechanism was proposed. A dynamic model of Stewart vibration isolation platform supported by quasi-zero-stiffness struts was established. Influences of strut’s stiffness and excitation amplitude on the vibration isolation performance were analyzed using incremental harmonic balance method. Based on flywheel’s four-degree-of-freedom linear disturbance model, a coupling dynamic model of flywheel and vibration isolation platform was established. The vibration isolation effect was analyzed using numerical simulation. The results show that this vibration isolation method can avoid the disturbance amplification of traditional linear vibration isolation at low frequency, improving the low-frequency vibration isolation performance and achieving flywheel’s full-speed vibration isolation. Meanwhile, the angular displacement response amplitude of flywheel can meet the pointing accuracy requirement of the angular momentum vector.
关键词
飞轮微振动 /
非线性隔振 /
准零刚度 /
六自由度隔振平台 /
增量谐波平衡法
{{custom_keyword}} /
Key words
Flywheel’s micro-vibration /
Nonlinear vibration isolation /
Quasi-zero-stiffness /
Six-degree-of-freedom isolator /
Incremental harmonic balance method(IHB)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Pendergast K J, Schauwecker, C J. Use of a passive reaction wheel jitter isolation system to meet the advanced X-ray astrophysics facility imaging performance requirements[C]// Proceedings of SPIE - The International Society for Optical Engineering. United States: NASA Center for Aerospace Information (CASI), 1998.
[2] Kamesh D, Pandiyan R, Ghosal A. Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform[J]. Journal of Sound and Vibration, 2012, 331(6):1310-1330.
[3] Zhou W, Li D. Experimental research on a vibration isolation platform for momentum wheel assembly[J]. Journal of Sound and Vibration, 2013, 332(5):1157-1171.
[4] Luo Q, Li D, Zhou W. Studies on vibration isolation for a multiple flywheel system in variable configurations[J]. Journal of Vibration and Control, 2015,21(1): 105-123.
[5] Tuo J, Deng Z, Huang W, et al. A six degree of freedom passive vibration isolator with quasi-zero-stiffness-based supporting[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018,37(2):279-294.
[6] Zhou J, Wang K, Xu D, et al. A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts[J]. Journal of Vibration and Acoustics, 2017, 139(3):1-5.
[7] Zhang Y, Guo Z, He H, et al. A novel vibration isolation system for reaction wheel on space telescopes[J]. Acta Astronautica, 2014,102:1-13.
[8] Geng Z J, Haynes L S. Six degree-of-freedom active vibration control using the Stewart platforms[J]. IEEE Transactions on control systems technology, 1994, 2(1): 45-53.
[9] 陈树辉.强非线性振动系统的定量分析方法[M]. 北京:科学出版社,2007.
[10] Masterson R, Miller D, Grogan R. Development of empirical and analytical reaction wheel disturbance models[C]//40th Structures, Structural Dynamics, and Materials Conference and Exhibit. St. Louis: AIAA. 1999.
[11] 罗青.航天器飞轮系统微振动特性及隔振方法研究[D].湖南长沙:国防科学技术大学研究生院,2014
[12] 陈泳斌,陈树辉.非线性隔振系统的运动响应和传递率[J].振动与冲击,1998,17(04):21-25.
Chen Yongbin, Chen Shuhui. The motion response and transmissibility of nonlinear vibration isolation system[J]. Journal of Sound and Vibration, 1998, 17(04):21-25.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}