基于Poincare截面突变特性的管道小缺陷识别与评估

成梦菲1 张伟伟 王晶2 闫晓鹏1 马宏伟3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 161-168.

PDF(1833 KB)
PDF(1833 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 161-168.
论文

基于Poincare截面突变特性的管道小缺陷识别与评估

  • 成梦菲1 张伟伟   王晶2  闫晓鹏1  马宏伟3
作者信息 +

Small defect identification and evaluation in a pipe based on Poincare cross-section sudden changes

  • CHENG Mengfei1,ZHANG Weiwei2,WANG Jing2,YAN Xiaopeng1,MA Hongwei3
Author information +
文章历史 +

摘要

利用混沌系统的参数敏感性与噪声免疫性,本文提出了一种以Poincare截面为混沌判据的弱导波信号检测系统,实现了管道小缺陷的识别与评估。首先,结合分岔分析与Poincare截面获取混沌阈值,完成了检测系统的参数设定。然后,通过仿真分析验证了以Poincare截面为混沌判据的检测系统的噪声免疫能力与参数敏感性。最后,开展了超声导波检测管道中小缺陷的实验研究,并将实测信号作为驱动力的扰动项输入到检测系统中,通过Poincare截面的突变有效地识别出小缺陷引起弱导波信号。为了对缺陷进行定位和评估,一种快速的二分法被用来进行缺陷定位,同时,通过在Poincare截面上构造胞空间,计算出Poincare截面上相点所占胞元数定义为损伤指标,该损伤指标在一定范围内与损伤程度具有简单的线性关系,可为缺陷大小评估提供参考。

Abstract

In this paper, a weak ultrasonic guided wave identification is proposed based on the Poincare section of the Duffing chaotic system to realize the identification and evaluation of small pipeline defects. This method utilizes the sensitivity of the Duffing chaotic system to weak signals of the same frequency. First, the critical state of the Duffing chaotic system's transition from periodic state to chaos is determined through bifurcation analysis. And the critical state is set as the inspection system; Then, the ultrasonic guided waves-based NDT are carried out in a pipeline, and the measured signal is added to the inspection system as a disturbance item of the driving force. The study show that the Poincare cross section of the system is a point, indicating that the system maintains a periodic state when there is only a noise signal in the detection signal but no guided wave signal; but the Poincare cross section of the system will suddenly change to a certain Hierarchical point collection when the detection signal contains a weak guided wave signal. This feature can be used to identify weak guided wave signals and to identify small defects in the pipeline. In order to quantitatively analyze the defects, the cell space on the Poincare section is constructed and the number of cells occupied by the phase points is counted and defined as the damage index, which is defined as damage index. Experiments studies show that there is a simple linear relationship between the damage index and the defect size.

关键词

Poincare截面 / 超声导波 / Duffing系统 / 无损检测

Key words

Poincare section / ultrasonic guided waves / Duffing system / nondestructive detection

引用本文

导出引用
成梦菲1 张伟伟 王晶2 闫晓鹏1 马宏伟3. 基于Poincare截面突变特性的管道小缺陷识别与评估[J]. 振动与冲击, 2022, 41(2): 161-168
CHENG Mengfei1,ZHANG Weiwei2,WANG Jing2,YAN Xiaopeng1,MA Hongwei3. Small defect identification and evaluation in a pipe based on Poincare cross-section sudden changes[J]. Journal of Vibration and Shock, 2022, 41(2): 161-168

参考文献

[1] Hayashi T, Tamyama C, Murase M. Wave structure analysis of guided waves in a bar with an arbitrary cross-section[J]. Ultrasonics, 2006,44(1):17-24.
[2] 程载斌,王志华,马宏伟.管道应力波检测技术及研究进展[J].太原理工大学学报,2003,34(4):426-431.
CHENG Zai-bin,WANG Zhi-hua,MA Hong-wei. A briefer view on damage detection in pipes using stress wave factor technique[J].Journal of Taiyuan University of Technology,2003,34(4):426-431.
[3] Lohr K R , Rose J L . Ultrasonic guided wave and acoustic impact methods for pipe fouling detection[J]. Journal of Food Engineering, 2003, 56(4):315-324.
[4] Li W , Cho Y . Thermal Fatigue Damage Assessment in an Isotropic Pipe Using Nonlinear Ultrasonic Guided Waves[J]. Experimental Mechanics, 2014, 54(8):1309-1318.
[5] Wang Guofu , Deng Peng , Zhang Faquan , et al. Noise Reduction of the Transient Electromagnetic Weak Signal under Strong Noise Based on Power Detection of EMD[J]. Applied Mechanics & Materials, 2011, 110-116:1606-1612.
[6] AISTEGUI C, LOWE M J S, CAWLEY P. Guided waves in fluid-filled pipes surrounded by different fluids[J]. Ultrasonics,2001,39(5):367-375.
[7] 何存富,刘增华,吴斌. 传感器在管道超声导波检测中的应用[J]. 传感器技术,2004,23(11):5-8.
HE Cunfu,LIU Zenghua,WU Bin.Application of transducers in pipes inspection using ultrasonic guided waves[J]. Journal of Transducer Technology, 2004,23(11):5-8.
[8] FENG Huan , LIU Xiucheng , WU Bin , et al. Design of a miniaturised ultrasonic guided wave inspection instrument for steel strand flaw detection[J]. Insight - Non-Destructive Testing and Condition Monitoring, 2017, 59(1):17-23.
[9] SONG Zhenhua , WANG Zhihua , MA Hongwei. Study on wavelet-based crack detection in pipes using ultrasonic longitudinal guided-wave[J]. Chinese Journal of Solid Mechanics, 2009,30(04):368-375.
[10] 周进节, 郑阳, 杨齐,等. 管道超声导波分段时间反转检测方法研究[J]. 机械工程学报, 2017, 53(12): 78-86.
ZHOU Jinjie, ZHENG Yang, YANG Qi,et al. Pipeline section time reversal inspection method with ultrasonic guided waves[J]. Journal of Mechanical Engineering, 2017, 53(12): 78-86.
[11] 宋军, 刘渝, 王旭东. 一种改进的窄带信号降噪算法及其应用[J]. 振动与冲击, 2013, 32 (16):59-63.
SONG Jun,LIU Yu,WANG Xudong. An improved denoising algorithm for narrow-band signal and its application[J].Journal of Vibration and Shock, 2013, 32(16): 59-63.
[12] WANG Guan-yu , CHEN Da-jun LIN Jian-ya,et al.The application of chaotic oscillators to weak signal detection[J]. IEEE Transactions on Industrial Electronics, 1999, 46(2):440-444.
[13] Jalilvand A, Fotoohabadi H. The application of Duffing oscillator in weak signal detection[J]. Electronics and Communications, 2011,9(1):1–6.
[14] WANG Guan-yu , HE Sai-ling . A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators[J]. IEEE Transactions on Circuits & Systems I Fundamental Theory & Applications, 2003, 50(7):945-953.
[15] 张淑清,姜万录,王玉田.强噪声中弱信号检测的混沌方法及超声系统的实现[J].电子测量与仪器学报,2001,15(2):11-16.
ZHANG Shu-qing,JIANG Wan-lu,WANG Yu-tian.Chaos theory for weak signal detection in high noise environment and its application in ultrasonic wave detection[J].Journal of Electronic Measurement and Instrument,2001,15(2):11-16.
[16] 邹珺,武新军,徐江.基于杜芬混沌振子的磁致伸缩导波信号识别[J].无损检测,2008,30(9):600-602.
ZOU Jun,WU Xin-jun,XU Jiang,et al.Identification of magnetostrictive guided wave signal based on Duffing chaotic oscillators[J]. Nondestructive Testing,2008,30(9):600-602.
[17] 张伟伟,马宏伟.利用混沌振子系统识别超声导波信号的仿真研究[J]. 振动与冲击, 2012,31(19):15-20.
ZHANG Weiwei,MA Hongwei.Simulations of ultrasonic guided wave identification using a chaotic oscillator [J].Journal of Vibration and Shock,2012,31(19):15-20.
[18]张伟伟,武静,马宏伟.基于Lyapunov指数的超声导波检测技术[J].振动.测试与诊断,2015,35(02):250-257+396-397.
ZHANG Wei-wei,WU Jing,MA Hong-wei.Ultrasonic guided wave Inspection method based on Lyapunov exponents[J].Journal of Vibration,Measurement & Diagnosis,2015,35(02):250-257+396-397.
[19] 武静,张伟伟,马宏伟.利用Lyapunov指数实现超声导波检测的实验研究[J].振动与冲击,2014,33(24):82-87.
WU Jing,ZHANG Wei-wei,MA Hong-wei.Experimental studies on ultrasonic guided wave inspection using Lyapunov exponents[J]. Journal of Vibration and Shock,2014,33(24):82-87.
[20] 武静, 张伟伟, 聂振华,等. 基于Lyapunov指数的管道超声导波小缺陷定位实验研究[J]. 振动与冲击, 2016, 035(001):40-45,53.
WU Jing,ZHANG Wei-wei,Nie Zhen-Hua, et al. Experimental studies using Lyapunov exponents on crack location in pipes by ultrasonic guided wave [J]. Journal of Vibration and Shock, 2016, 035(001):40-45,53.
[21] 蔺向阳, 陈长兴, 凌云飞等. 基于Poincare截面点的二阶混沌系统状态的定量判别[J]. 空军工程大学学报:自然科学版, 2019, 20(2):86-93.
LIN Xiang-yang, CHEN Chang-xing, LING yun-fei, et al. The state quantificational judgment on second-order chaos based on the Poincare section points[J]. Journal of Air Force Engineering University(Natural Science Edition) , 2019, 20(2):86-93.
[22] 李亚峻,李月.用Melnikov函数的数值积分法估计混沌阈值[J].系统仿真学报, 2004(12):2692-2695.
Li Yajun, Li Yue. Estimate of Chaotic Threshold by Numerical Integral Method of Melnikov Function[J]. Journal of System Simulation, 2004(12):2692-2695.

PDF(1833 KB)

551

Accesses

0

Citation

Detail

段落导航
相关文章

/