基于信息融合和广义循环互相关熵的电机轴承故障诊断

李辉1,郝如江2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 200-207.

PDF(2456 KB)
PDF(2456 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 200-207.
论文

基于信息融合和广义循环互相关熵的电机轴承故障诊断

  • 李辉1,郝如江2
作者信息 +

Rolling bearing fault diagnosis based on sensor information fusion and generalized cyclic cross correntropy spectrum density

  • LI Hui1,HAO Rujiang2
Author information +
文章历史 +

摘要

针对传统基于单路振动信号的故障识别可靠性较差和传统谱相关方法难以有效处理非高斯噪声的问题,提出了一种基于多传感器振动信号信息融合和广义循环互相关熵谱的轴承故障诊断方法。首先推导了广义互相关熵、广义循环互相关熵和广义循环互相关熵谱密度的计算公式;然后给出了电机轴承故障诊断步骤;再利用轴承外圈故障仿真信号,分析了轴承故障振动信号的频谱特征,验证了广义相关熵的降噪性能,表明广义循环相关熵能有效处理高斯和非高斯噪声。最后将两路振动信号通过广义循环互相关熵进行融合,并应用于电机轴承故障诊断,实验结果表明:广义循环互相关熵能有效提取电机轴承内圈、外圈局部裂纹故障频谱特征,提高了故障诊断的准确性和可靠性,其性能优于传统的谱相关方法。

Abstract

In the field of fault diagnosis and identification, the reliability of fault feature extraction and recognition based on single sensor vibration signal is lower. The traditional spectral correlation density method has poor time-frequency aggregation ability. In order to solve these problems, a bearing fault diagnosis method based on multiple sensors information fusion and generalized cyclic cross correntropy spectrum density is proposed. Firstly, the definition and calculation formula of generalized cross correntropy, generalized cyclic cross correntropy and generalized cyclic cross correntropy spectral density are deduced in detail. Then the de-noising performance of generalized cyclic cross correntropy is analyzed and verified by means of a simulative bearing outer race defect signal, which shows that generalized cyclic cross correntropy can effectively deal with Gaussian and non Gaussian noise. Finally, the generalized cyclic cross correntropy is applied to the fault detection and identification of the motor bearing inner and outer race defect. The experimental results show that the generalized cyclic cross correntropy can effectively extract the fault characteristics of the rolling bearing, and the generalized cyclic cross correntropy can accurately describe the spectral characteristics of the bearing defect. The performance of generalized cyclic cross correntropy spectral density is better than that of the traditional spectral correlation density method.

关键词

广义互相关熵 / 广义循环互相关熵函数 / 广义循环互相关熵谱密度 / 循环平稳信号 / 轴承 / 故障诊断

Key words

Generalized cross correntropy / Generalized cyclic cross correntropy function / Generalized cyclic cross correntropy spectral density function / Cyclostationary signals / Bearing / Fault diagnosis

引用本文

导出引用
李辉1,郝如江2. 基于信息融合和广义循环互相关熵的电机轴承故障诊断[J]. 振动与冲击, 2022, 41(2): 200-207
LI Hui1,HAO Rujiang2. Rolling bearing fault diagnosis based on sensor information fusion and generalized cyclic cross correntropy spectrum density[J]. Journal of Vibration and Shock, 2022, 41(2): 200-207

参考文献

[1]郝如江, 卢文秀, 褚福磊. 滚动轴承故障信号的数学形态学提取方法[J].中国电机工程学报, 2008, 28(26): 65-70.
Hao Rujiang, Lu Wenxiu, Chu Fulei. Mathematical Morphology Extracting Method on Roller Bearing Fault Signals[J].Proceedings of the CSEE, 2008, 28(26): 65-70.
[2]康守强, 邹佳悦, 王玉静, 谢金宝, V.I.MIKULOVICH. 基于无监督特征对齐的变负载下滚动轴承故障诊断方法[J]. 中国电机工程学报, 2020, 40(1): 274-281.
Kang Shouqiang, Zou Jiayue, Wang Yujing, Xie Jinbao, MIKULOVICH V I. Fault Diagnosis Method of a Rolling Bearing Under Varying Loads Based on Unsupervised Feature Alignment[J]. Proceeding of the CSEE, 2020, 40(1): 274-281.
[3]Antoni J. Cyclic spectral analysis in practice [J]. Mechanical Systems and Signal Processing, 2007, 21(2): 597–630.
[4]张文义, 于德介, 陈向民. 基于信号共振稀疏分解与能量算子解调的轴承故障诊断方法[J]. 中国电机工程学报, 2013, 33(20): 111–118.
Zhang Wenyi, Yu Dejie, Chen Xiangmin. Fault diagnosis of rolling bearings based on resonance-based sparse signal decomposition and energy operator demodulating[J] Proceeding of the CSEE, 2013, 33(20): 111–118.
[5]唐贵基, 王晓龙. 自适应最大相关峭度解卷积方法及其在轴承早期故障诊断中的应用[J]. 中国电机工程学报, 2015, 35(6):1436-1444.
Tang Guiji, Wang Xiaolong. Adaptive Maximum Correlated Kurtosis Deconvolution Method and Its Application on Incipient Fault Diagnosis of Bearing[J]. Proceedings of the CSEE, 2015, 35(6):1436-1444.
[6]李辉,郑海起,唐立伟.声测法和经验模态分解在轴承故障诊断中的应用[J].中国电机工程学报, 2006, 26(15):124-128.
Li Hui,Zheng Haiqi,Tang Liwei. Application acoustic emission and empirical mode decomposition to faults diagnosis of bearing[J]. Proceedings of the CSEE, 2006, 26(15):124-128.
[7]Antoniadis I, Glossiotis G. Cyclostationary analysis of rolling-element bearing vibration signals [J]. Journal of Sound and Vibration, 2001, 248(5): 829–845.
[8]Bouillaut L, SIDAHMED M. Cyclostationary approach and bilinear approach: comparison, applications to early diagnosis for helicopter gearbox and classification method based on HOCS [J]. Mechanical Systems & Signal Processing, 2001, 15(5): 923–943.
[9]Antoniadis I, Glossiotis G. Cyclostationary analysis of rolling-element bearing vibration signals[J]. Journal of Sound and Vibration, 2001, 248(5): 829–845.
[10]郭莹, 邱天爽. 基于分数低阶统计量的盲多用户检测算法[J].电子学报, 2007, 35(9): 1670–1674.
Guo Ying and Qiu Tianshuang. Blind multiuser detector based on FLOS in impulse noise environment[J]. Acta Electronica Sinica, 2007, 35(9): 1670–1674.
[11]Ma Xinyu and NIKIAS C L. Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics [J]. IEEE Transactions on Signal Processing, 1996, 44(11): 2669–2687.
[12]邱天爽, 王宏禹, 孙永梅. 一种基于分数低阶协方差的自适应EP潜伏期变化检测方法[J]. 电子学报, 2004, 32(1): 91–95.
Qiu Tianshuang, Wang Hongyu, and Sun Yongmei. A fractional lower-order covariance based adaptive latency change detection for evoked potentials[J]. Acta Electronica Sinica, 2004, 32(1): 91–95.
[13]Santamaria I, Pokharel P P, Principe J C. Generalized correlation function: definition, properties, and application to blind equalization [J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2187–2197.
[14] Liu W, Pokharel P P, Principe J C. Correntropy: Properties and Applications in Non-Gaussian Signal Processing [J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5286–5298.
[15] GUNDUZ A and PRINCIPE J C. Correntropy as a novel measure for nonlinearity tests [J]. Signal Processing, 2009, 89(1): 14–23.
[16]宋爱民, 邱天爽, 佟祉谏. 对称稳定分布的相关熵及其在时间延迟估计上的应用[J]. 电子与信息学报, 2011, 33(2): 494–498.
Song Aimin, Qiu Tianshuang, and Tong Zhijian. Correntropy of the symmetric stable distribution and its application to the time delay estimation[J]. Journal of Electronics & Information Technology, 2011, 33(2):494–498.
[17]王鹏, 邱天爽, 任福全, 等. 对称稳定分布噪声下基于广义相关熵的DOA估计新方法[J]. 电子与信息学报, 2016, 38(8):2007–2013.
Wang Peng, Qiu Tianshuang, Ren Fuquan, et al. A novel generalized correntropy based method for direction of arrival estimation in symmetric alpha stable noise environments[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2007–2013.
[18]Ling Y, Tian-shuang Q, Shengyang L. Fractional time delay estimation algorithm based on the maximum correntropy criterion and the Lagrange FDF [J]. Signal Processing, 2015, 111: 222–229.
[19]Chen Bendong, Xing Lei, Zhao Haiquan, et al. Generalized Correntropy for Robust Adaptive Filtering[J]. IEEE Transactions on Signal Processing, 2016, 64(13): 3376–3387.
[20] Li G, Zhang H, Zhao J. Generalized Correntropy Induced Metric Memory-Improved Proportionate Affine Projection Sign Algorithm and Its Combination[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019: 1–1.
[21] X. Xu, Y. Zhang, M. Ren, J. Zhang and G. Yan, Generalized Correntropy Filter-Based Fault Diagnosis and Tolerant Control for Non-Gaussian Stochastic Systems Subject to Sensor Faults, IEEE Access, 2018, 6:12598-12607.
[22]刘希亮,陈桂明,李方溪, 等.基于多传感器信息融合的故障诊断方法研究及应用[J].机械强度,2013,35(6):743-748.
Liu Xiliang, Chen Guiming, Li Fangxi, et al. Research on fault diagnosis based on multi-sensor information fusion and its application[J]. Journal of Mechanical Strength, 2013, 35(6):743-748.
[23] Varanasi M K, Aazhang B. Parametric generalized Gaussian density estimation [J]. The Journal of the Acoustical Society of America, 1989, 86(4):1404-1415.
[24] Randall R B, Antoni J, Chobsaard S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals[J]. Mechanical Systems and Signal Processing, 2001, 15(3):945-962.
[25]陈进,董广明.机械故障特征提取的循环平稳理论及方法[M].上海:上海交通大学出版社,2013.
Chen Jin, Dong Guangming. Cyclostationary theory and method of mechanical fault feature extraction[M].Shanghai: Shanghai Jiaotong University Press, 2013.
[26]Antoni J, Xin G, Hamzaoui N. Fast computation of the spectral correlation [J]. Mechanical Systems and Signal Processing, 2017, 92: 248–277.
[27]Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study [J]. Mechanical Systems & Signal Processing, 2015, 64–65(dec.): 100–131.
[28] 李 辉,郑海起,唐力伟. 基于改进双树复小波变换的轴承多故障诊断[J], 振动、测试与诊断,2013,33(1):53-59.
Li Hui, Zheng Haiqi, Tang Liwei. Bearing multi-faults diagnosis based on improved dual-tree complex wavelet transform [J], Journal of Vibration, Measurement& Diagnosis, 2013,33(1):53-59.

PDF(2456 KB)

Accesses

Citation

Detail

段落导航
相关文章

/