物理模型与高斯过程融合驱动的残余应力疲劳状态评估

梁天佑,尹爱军,陈平,方杰

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 224-228.

PDF(1242 KB)
PDF(1242 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 224-228.
论文

物理模型与高斯过程融合驱动的残余应力疲劳状态评估

  • 梁天佑,尹爱军,陈平,方杰
作者信息 +

Residual stress fatigue state evaluation driven by the fusion of physical model and Gaussian process

  • LIANG Tianyou,YIN Aijun,CHEN Ping,FANG Jie
Author information +
文章历史 +

摘要

振动是金属构件疲劳失效的重要因素,残余应力可以表征金属构件疲劳状态。然而残余应力在构件疲劳过程中演化行为复杂,传统寿命模型通常适用于残余应力缓慢松弛过程,且较少考虑初始残余应力、冷作硬化、材料差异性等影响,评估误差大。论文融合Kodama物理模型和基于高斯过程的数据驱动方法,建立了物理模型和高斯过程融合驱动的疲劳状态评估模型。通过铝合金疲劳试验,证明了本文方法可减少试样材料、表面强化工艺等差异性对评估结果的影响,提高残余应力演化模型准确性。

Abstract

Vibration is an important factor in the fatigue failure of metal components, and residual stress can characterize the fatigue state of metal components. Residual stress is an important factor affecting the fatigue life of metal components. The introduction of residual compressive stress through surface strengthening techniques such as shot peening can improve the life of components. However, the evolution behavior of residual stress in the process of fatigue is complex. The traditional life model is usually suitable for the slow relaxation process of residual stress, and less consideration is given to the effects of initial residual stress, cold work hardening, material difference and so on. These models has large evaluation error. In this paper, the thesis fuses the physical model and the data-driven method based on Gaussian process, and establishes the component cycle prediction model driven by the fusion of Kodama physical model and Gaussian process (K-GP). The fatigue test of 2024 aluminum alloy shot peening specimens proves that the model proposed in this paper can reduce the influence of differences in specimen materials and surface strengthening processes on the evaluation results and improve the accuracy of the residual stress evolution model.

关键词

金属构件 / 残余应力 / 疲劳状态评估 / 高斯过程 / 融合驱动

Key words

metal component / residual stress / fatigue state assessment / Gaussian process / fusion-driven

引用本文

导出引用
梁天佑,尹爱军,陈平,方杰. 物理模型与高斯过程融合驱动的残余应力疲劳状态评估[J]. 振动与冲击, 2022, 41(2): 224-228
LIANG Tianyou,YIN Aijun,CHEN Ping,FANG Jie. Residual stress fatigue state evaluation driven by the fusion of physical model and Gaussian process[J]. Journal of Vibration and Shock, 2022, 41(2): 224-228

参考文献

[1] 周标,柯宏威,陈旭,臧朝平,金瑶. 基于压电分支阻尼技术的航空发动机叶片振动抑制方法研究[J]. 振动与冲击, 2020, 39(1): 209-215.
ZHOU Biao, KE Hongwei, CHEN Xu, ZANG Chaoping, JIN Yao. Aero-engine blade vibration suppression method based on piezoelectric shunt damping technique. JOURNAL OF VIBRATION AND SHOCK, 2020, 39(1): 209-215.
[2] 卜嘉利,高志坤,佟文伟,孙佳斯.航空发动机油管固定支架断裂失效分析[J].航空发动机,2020,46(03):40-45.
Bu Jiali, Gao Zhikun, Tong Wenwei, Sun Jiasi. Fracture Failure Analysis of Fixed Bracket for Aeroengine Oil Tube[J]. Aeroengine, 2020, 46(03): 40-45.
[3] LU J, FLAVENOT J F, TURBAT A. Prediction of residual stress relaxation during fatigue loading and taking residual stresses in a multiaxial fatigue criteria into account[C]// International conference on residual stresses. France: Springer, 1989.
[4] 慕琴琴,由于,燕群.发动机薄壁盘类零件振动疲劳试验技术研究[J].应用力学学报,2020,37(05):1993-1998+2319.
Mu Qinqin, You Yu, Yan Ran. Research on vibration fatigue test of engine thin-walled disc parts[J]. Chinese Journal of Applied Mechanics, 2020,37(05): 1993-1998+2319.
[5] 周磊,张政,张合吉,吴磊等.不同轨道结构形式下地铁车辆部件振动及应力分析[J].机械,2020,47(09):17-24.
Zhou Lei, Zhang Zheng, Zhang Hejie, et al. Vibration and Stress Analysis of Subway Vehicle Components in Different Track Structure Forms[J]. Machinery,2020,47(09):17-24.
[6] Kodama s. The behavior of residual stress during fatigue cycles. In: proceedings of international conference on mechanical behavior of metals. Society of Material Science, Kyoto, Japan:1972.p.111-8
[7] Wyman Z. Zhuang, Gary R. Halford. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue,2001,23.
[8] Omar Suliman Zaroog, Aidy Ali, B.B. Sahari, Rizal Zahari. Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy[J]. International Journal of Fatigue,2011,33(2).
[9] ZHANG S, XIE J, JIANG Q, et al. Fatigue crack growth behavior in gradient microstructure of hardened surface layer for an axle steel[J]. Materials science and engineering: A, 2017, 700: 66-74.
[10] 郭振坤,张成成,尚德广,方磊.多轴蠕变-疲劳寿命预测系统软件开发[J].装备环境工程,2015,12(4):137-141.
Guo Zhenkun, Zhang Chengcheng, Shang Deguang, Fang Lei. Development of Software System of Multiaxial Creep-Fatigue Life Prediction under Complex Loading at High Temperature[J]. Equipment Environmental Engineering, 2015,12(4):137-141.
[11] 夏丽娇,李小岩. SMT-PGA封装焊点热疲劳寿命计算模型研究[J]. 装备环境工程,2017,14(1):21-23.
Xia Lijiao, Li Xiaoyan. Thermal Fatigue Life predication Model of Solder Joint for SMT-PGA Package[J]. Equipment Environmental Engineering, 2017, 14(1):21-23.
[12] George Casella, Roger L. Berger. Statistical Inference [M]. Duxbury Press, 2001.
[13] 王法胜,鲁明羽,赵清杰等.粒子滤波算法[J].计算机学报,2014,37(08):1679-1694.
Wang Fasheng, Lu Mingyu, Zhao Qingjie, et al. Particle Filtering Algorithm[J]. Chinese Journal of Computers,2014,37(08):1679-1694.
[14] 李金魁,王长利,姚枚,王仁智.喷丸件表面粗糙度及其对疲劳极限的影响[J].金属科学与工艺,1991(03):11-19.
Li Jinkui, WangChangli, Yao Mei, et al. Surface roughness of shot peening and its influence on fatigue limit[J]. Materials Science and Technology,1991(03):11-19.
[15] Wyman Z. Zhuang Gary R. Halford. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue,2001,31-37.
[16] 徐丽,陈跃良,刘旭.喷丸处理构件疲劳寿命预测机理模型研究[J].飞机设计,2013,33(05):31-34.
Xu Li, Chen Yueliang, Liu Xu. Mechanism Modelling of Shot Peening Effect on Fatigue Life Prediction[J]. Aircraft Design,2013,33(05): 31-34.
[17] 王帅. 喷丸残余应力和表面粗糙度对疲劳寿命的综合影响研究[D].山东大学,2018.
Wang Shuai. Research on the Comprehensive Effect of Shot-peening Residual Stress and Surface Roughness on Fatigue Life[D]. SHANDONG UNIVERSITY,2018.
[18] 王高岳,张慧君,陈贤等.基于高斯过程回归的大气进入段航天器飞行能力预测方法[J/OL].系统工程与电子技术, 2020, 42(10): 2334-2339.
Wang Gaoyue, Zhang Huijun, Chen Xian, et al. Prediction method of entry phase flight capability based on Gaussian process regression[J/OL]. Systems Engineering and Electronics, 2020, 42(10): 2334-2339.
[19] 吕佳朋,史贤俊,王康.基于高斯过程回归的电池容量预测模型[J].电子测量技术,2020,43(03):43-48.
Lv Jiapeng, Shi Xianjun, Wang Kang. Battery capacity prediction model based on Gaussian process regression[J]. Electronic Measurement Technology,2020, 43(03):43-48.
[20] 朱泓钰. 高斯过程模型对股票价格的预测研究[D].云南大学,2017.
Zhu Hongyu. Prediction of Stock Price Using Gaussian Process Model[D]. Yunnan University,2017.
[21] Roberts, Stephen, OSBORNE M , EBDEN M , et al. "Gaussian processes for time-series modelling[J]. Philosophical Transactions, 2012, 371(1984):20110550.
[22] Chen, Zexun. Gaussian process regression methods and extensions for stock market prediction. Diss. Department of Mathematics, 2017.
[23] S. Brahim-Belhouari, A. Bermak, Gaussian process for nonstationary time series prediction, Computational Statistics and Data Analysis 47 (4) (2004) 705–712.
[24] 闫五柱,刘军,温世峰,岳珠峰. 喷丸过程中的能量转化及残余应力分布研究[J]. 振动与冲击, 2011, 30(6): 139-142.
YAN Wuzhu, LIU Jun, WEN Shifeng, YUE Zhufeng. Study of Energy Transformation and Residual Stress Distribution in Shot Peening Process[j]. JOURNAL OF VIBRATION AND SHOCK, 2011, 30(6): 139-142.

PDF(1242 KB)

Accesses

Citation

Detail

段落导航
相关文章

/