高速列车车下惯容悬吊设备动态特性研究

王勇1,李昊轩1,姜文安2,汪若尘1,李勇1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 246-254.

PDF(1642 KB)
PDF(1642 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 246-254.
论文

高速列车车下惯容悬吊设备动态特性研究

  • 王勇1,李昊轩1,姜文安2,汪若尘1,李勇1
作者信息 +

Dynamic characteristics of an underframe inerter-based suspended equipment for high speed trains

  • WANG Yong1, LI Haoxuan1, JIANG Wen’an2, WANG Ruochen1, LI Yong1
Author information +
文章历史 +

摘要

高速列车采用轻量化设计准则与动力分散式牵引方式,轻量化设计导致车体弹性振动加剧,动力分散式牵引方式将悬吊设备安装在车体下方,引起车体和设备的耦合振动。将惯容器运用于高速列车车下悬吊设备,设计新型悬吊设备减振系统,建立高速列车车体及车下惯容悬吊设备刚柔耦合垂向动力学模型,采用遗传算法优化惯容悬吊设备结构参数,通过虚拟激励法和平稳性快速算法求得系统的动力学响应,采用Sperling平稳性指标评价系统的动态性能,并与传统悬吊设备进行对比分析。研究表明相较传统悬吊设备,惯容悬吊设备能够有效抑制高速列车车身振动,提升系统动力学性能。

Abstract

The lightweight design criterion and power decentralized traction were used in high speed train, the lightweight design led to increased elastic vibration of the car body and the power decentralized traction installed suspended equipment under the car body, which caused the coupled vibration between the car body and equipment. The inerter was applied in a underframe suspended equipment for high speed train, a novel suspended equipment vibration suppression system was designed, the rigid-flexible coupling vertical dynamic model of the car body and underframe inerter-based suspended equipment was established. The structural parameters of the underframe inerter-based suspended equipment were optimized using the genetic algorithm, the dynamic response of the system was obtained using the virtual excitation method and fast stability algorithm, the dynamic characteristics of the system was evaluated by the Sperling index and compared with the counterpart of the traditional suspended equipment. The results showed that compared with traditional suspended equipment, the inerter-based suspended equipment could effectively suppress the vibration of the car body and improve the dynamic performance.

关键词

高速列车 / 惯容器 / 悬吊设备 / 参数优化 / 动态特性

Key words

high speed train / inerter / suspended equipment / parameter optimization / dynamic characteristics

引用本文

导出引用
王勇1,李昊轩1,姜文安2,汪若尘1,李勇1. 高速列车车下惯容悬吊设备动态特性研究[J]. 振动与冲击, 2022, 41(2): 246-254
WANG Yong1, LI Haoxuan1, JIANG Wen’an2, WANG Ruochen1, LI Yong1. Dynamic characteristics of an underframe inerter-based suspended equipment for high speed trains[J]. Journal of Vibration and Shock, 2022, 41(2): 246-254

参考文献

[1] 汪群生, 曾京, 朱彬等. 基于最优控制理论的高速列车车下悬吊系统半主动悬挂[J]. 机械工程学报, 2020, 56(4): 160-167.
WANG Qun-sheng, ZENG Jing, ZHU Bin et al. Semi-active suspension applied on carbody underneath suspended system of high-speed railway based on optimal control theory[J]. Journal of Mechanical Engineering, 2020, 56(4): 160-167.
[2] 吴会超, 邬平波, 曾京等. 车下设备对车体振动的影响[J], 交通运输工程学报, 2012, 12(5): 50-56.
WU Hui-chao, Wu Ping-bo, ZENG Jing, et al. Influence of equipment under car on carbody vibration[J]. Journal of Traffic Transportation Engineering, 2012, 12(5): 50-56.
[3] 石怀龙, 罗仁, 邬平波等, 基于动力吸振原理的动车组车下设备悬挂参数设计[J]. 机械工程学报, 2014, 50(14): 155-161.
SHI Huai-long, LUO Ren, Wu Ping-bo, et al. Suspension parameters designing of equipment for electric multiple units based on dynamic vibration absorber theory[J]. Journal of Mechanical Engineering, 2014, 50(14): 155-161.
[4] Smith M C. Synthesis of mechanical networks:the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662.
[5] 杨晓峰,胡健滨,刘雁玲等. 基于惯质耦合振动作用的车辆ISD悬架性能研究[J]. 振动与冲击,2017, 36(24): 256-260.
YANG Xiao-feng , HU Jian-bin , LIU Yan-ling, et al. Vehicle ISD suspension performances based on effect of inerter-sprung mass coupled vibration[J]. Journal of Vibration and Shock, 2017, 36(24): 256-260.
[6] 陈文韬, 陈政清, 封周权等. 节点刚度和惯质对减振器及轨道车辆悬挂性能的影响[J]. 机械科学与技术, 2019, 38(11):1647-1653.
CHEN Shi-jun, CHEN Zheng-qing, ZHOU Zhan-yuan, et al. Influence of joint stiffness and inertance on performance of damper and train suspension [J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11):  1647-1653.
[7] Wang Y, Ding H, Chen L Q. Averaging analysis on a semi-active inerter-based suspension system with relative-acceleration-relative-velocity control[J]. Journal of Vibration and Control, 2020, 26(13-14): 1199-1215.
[8] 莊初立, 五十子幸树, 张永山. 极端地震下惯容器-弹簧-阻尼装置对隔震结构减震效果研究[J]. 振动与冲击, 2019, 38(12): 112-117.
CHONG Cholap, KOHJU Ikago, ZHANG Yong-shan. Performance of track vehicle suspension system based on inerters[J]. Journal of Vibration and Shock, 2019, 38(12): 112-117.
[9] Li Y, Jiang J Z, Neild S A, et al. Optimal Inerter-based shock-strut configurations for landing-Gear touchdown performance[J]. Journal of Aircraft, 2017, 54(5): 1901-1909.
[10] Hu Y, Chen M Z Q, Xu S, et al. Semiactive Inerter and Its Application in Adaptive Tuned Vibration Absorbers[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1): 294-300.
[11] 陈杰,孙维光,吴杨俊等.基于惯容负刚度动力吸振器的梁响应最小化[J]. 振动与冲击, 2020, 39(8):15-22.
HE Qian, DU Jing-tao ZHANG Yun. Minimization of beam response using inerter-based dynamic vibration absorber with negative stiffness [J]. Journal of Vibration and Shock, 2020, 39(8):15-22.
[12] 何谦, 杜敬涛, 张贇. 带惯容器的非线性隔振器对双层隔振系统动态特性影响分析[J]. 噪声与振动控制, 2018, 38(0z1):330-333.
HE Qian, DU Jing-tao ZHANG Yun. Study on dynamic characteristics analysis of nonlinear double-stage vibration isolation systems with inerter[J]. Noise and Vibration Control, 2018, 38(0z1):330-333.
[13] 王勇, 汪若尘, 孟浩东等. 基于相对加速度-相对速度控制的半主动惯容隔振器动态特性研究[J]. 振动与冲击, 2019, 38(21): 194-201.
WANG Yong, WANG Ruo-chen, MENG Hao-dong, et al. Dynamic characteristics of semi active inerter-based vibration isolator with relative acceleration-relative velocity control[J]. Journal of Vibration and Shock, 2019, 38(21): 194-201.
[14] Wang Y, Meng H D, Zhang B Y, et al. Analytical research on the dynamic performance of semi-active inerter-based vibration isolator with acceleration-velocity-based control strategy[J]. Structural Control and Health Monitoring, 2019, 26(4), e2336.
[15] Wang F C, Liao M K, Liao B H, et al. The performance improvements of train suspension systems with mechanical networks employing inerters[J]. Vehicle System Dynamics, 2009, 47(7): 805-830.
[16] 孙晓强, 陈龙, 汪少华等. 基于惯容器的铁道车辆悬挂性能提升研究[J]. 铁道学报, 2017, 39(9): 32-38.
SUN Xiao-qiang, CHEN Long, WANG Shao-hua, et al. Research on performance benefits in railway vehicle suspension employing inerter[J]. Journal of the China Railway Society, 2017, 39(9): 32-38.
[17] 陈文韬, 封周权, 陈政清等. 基于惯容器的轨道车辆悬挂系统性能研究[J]. 振动与冲击, 2019, 38(23): 171-177.
CHEN Wen-tao, FENG Zhou-quan, CHEN Zheng-qing, et al. Performance of track vehicle suspension system based on inerters[J]. Journal of Vibration and Shock, 2019, 38(23): 171-177.
[18] 周劲松, 张伟, 孙文静等. 铁道车辆弹性车体动力吸振器减振分析[J]. 中国铁道科学, 2009, 38(11):1647-1653.
ZHOU Jin-song, ZHANG Wei, SUN Wen-jing, et al. Vibration Reduction Analysis of the Dynamic Vibration Absorber on the Flexible Carbody of Railway Vehicles[J]. China Railway, Science, 2009, 38(11):1647-1653.
[19] 张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J].工程力学, 2019, 36(10): 8-27.
ZHANG Rui-fu, CAO Yan-ru, PAN Cao. Inerter system and its state-of-the-art [J]. Engineering Mechanics, 2019, 36(10): 8-27.
[20] 孙文静, 周劲松, 宫岛. 弹性车体垂向运行平稳性一系最优控制研究[J]. 振动与冲击, 2012, 31(12): 150-154.
SUN Wen-jing, ZHOU Jin-song, GONG Dao. Vertical ride quality of a flexible car body of railway vehicles with optimal control of primary suspension[J]. Journal of Vibration and Shock, 2012, 31(12): 150-154.
[21] Gong D, Zhou J S, Sun W J, et al. On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber[J]. Journal of Vibration and Control, 2012, 19(5): 649-657.
[22] 陈士军, 凌贤长, 朱占元等. 轨道高低不平顺谱分析[J]. 地震工程与工程震动, 2012, 32(5): 33-38.
CHEN Shi-jun, LING Xian-zhang, ZHU Zhan-yuan, et al. Analyses of track vertical profile irregularity spectra[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(5): 33-38.

PDF(1642 KB)

Accesses

Citation

Detail

段落导航
相关文章

/