针对一类多模态振动衰减信号的模态参数识别,结合奇异值分解(singular value decomposition ,SVD)、解析模态分解(analytical mode decomposition ,AMD)、自回归功率谱(auto regressive power spectral density ,ARPSD)和粒子群算法(particle swarm optimization ,PSO),提出了一种改进的模态参数识别方法(PSO-AMD),可实现在强干扰环境下密集频率信号的模态参数识别。对模拟振动响应信号的分析结果表明,本文提出的改进方法具有更高的稳定性,对低信噪比、密集频率、大阻尼的振动信号仍保持高识别精度。本文的模态参数识别方法可应用于复杂噪声环境中的大阻尼和密集频率衰减振动信号的模态参数识别。
Abstract
Aiming at the modal parameter identification of multimodal vibration attenuation signals, an improved modal parameter identification method (PSO-AMD) is proposed by combining singular value decomposition (SVD), analytical mode decomposition (AMD), auto regressive power spectral density spectrum (ARPSD) and particle swarm optimization (PSO). The method can be used for modal parameter identification of dense frequency signals in strong noise environment. The analysis results of the simulated vibration response signal show that the improved method proposed in this paper has higher stability and maintains high recognition accuracy for vibration signals with low SNR, dense frequency and large damping. The modal parameter identification method in this paper can be applied to modal parameter identification of large damping and dense frequency vibration attenuation signals in complex noise environment.
关键词
模态参数识别 /
奇异值分解 /
粒子群算法 /
自回归功率谱 /
解析模态分解
{{custom_keyword}} /
Key words
modal parameter identification /
singular value decomposition /
analytical mode decomposition /
particle swarm optimization algorithm /
auto regressive power spectral density spectrum
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 禹丹江. 土木工程结构模态参数识别[D]. 福州:福州大学, 2006.
YU Dan-jiang. Modal parameter identification of civil engineering structures-theory, implementation and applications [D]. Fuzhou: Fuzhou University, 2006.
[2] Prevosto M. Vibration and Vibration Description Recognition Algorithms for Complex Mechanical Structures [D]. University of Rennes 1, 1982.
[3] Cole H A. On-the-line analysis of random vibrations[J]. Proceedings of the National Academy of Sciences, 1997, 94(6): 2557-2562.
[4] Peeters B, DeRoeck G, Pollet T, et al. Stochastic subspace techniques applied to parameter identification of civil engineering structures [C]// Proceedings of the International Conference MV2, 1995.
[5] Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. Journal of Mathematical Analysis, 1984, 15(4): 723-736.
[6] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(3): 903-995.
[7] CHEN G, WANG Z. A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components [J]. Mechanical Systems and Signal Processing, 2012, 28(2): 258-279.
[8] 李晶,曹登庆,刘绍奎,等. 基于解析模态分解和Hilbert变换的模态参数辨识新方法[J]. 振动与冲击,2016,35(1): 34-39.
LI Jing, CAO Deng-qing, LIU Shao-kui, et al. A new method for modal parameter identification based on analytical modal decomposition and Hilbert transformation[J]. Journal of Vibration and Shock, 2016, 35(1): 34-39.
[9] 钱征文,程礼,李应红. 利用奇异值分解的信号降噪方法[J]. 振动.测试与诊断,31(4): 459-463.
Qian Zheng-wen, CHENG Li, LI Ying-hong. Signal denoising method based on singular value decomposition[J]. Journal of Vibration Measurement and Diagnosis, 31(4): 459-463.
[10] 王佐才, 任伟新, 邢云斐. 基于解析模态分解的时变与弱非线性结构密集模态参数识别[J]. 振动与冲击, 2014, 33(19):1-7.
WANG Zuo-cai, REN Wei-xin, XING Yun-fei. Analytical modal decomposition-based time-varying and weakly nonlinear structures’ modal parametric identification with closely-spaced modes[J]. Journal of Vibration and Shock, 2014, 33(19):1-7.
[11] HUANG D,ZHAO J,SUN J. Practical implementation of Hilbert-Huang Transform algorithm[J]. Acta Oceanologica Sinica, 2003, 22(1): 1-14.
[12] 万熹, 黄天立, 陈华鹏. 环境激励下基于改进经验小波变换的土木工程结构模态参数识别[J]. 振动工程学报, 2020, 33(02) 219-230.
WAN Xi, HUANG Tian-li, CHEN Hua-peng. Improved empirical wavelet transform for modal parameters identification of civil engineering structures under ambient excitations[J]. Journal of Vibration Engineering, 2020, 33(02) 219-230.
[13] 后军军, 王佐才, 任伟新. 结构动力响应扩展离散解析模式分解的截止频率优化选取方法[J]. 振动工程学报, 2018, 31(03):365-373.
HOU Jun-jun, WANG Zuo-cai, REN Wei-xin. Cut-off frequency selecting based on extended discrete analytical mode decomposition of structural dynamic responses[J]. Journal of Vibration Engineering, 2020, 33(02) 219-230.
[14] BROCKWELL P J, DAVIS R A. Introduction to Time Series and Forecasting [M]. Springer Science &Business Media, 2006, 113-115.
[15] 谢发祥,孙利民. 受控结构频率密集度的判别及其对控制效果的影响[J]. 山东大学学报(工学版),2009,39(05): 101-105.
XIE Fa-xiang, SUN Li-min. Judging criterion of structures with closely spaced natural frequencies and its effect on control results[J]. Journal of Shandong University (Engineering Science), 2009, 39(05): 101-105.
[16] 罗晓群, 张锦东, 张晋, 等. 铝合金单层球面网壳结构阻尼特性[J]. 湖南大学学报(自然科学版), 2020, 47(7): 84-92.
LUO Xiao-qun, ZHANG Jin-dong, ZHANG Jin, et al. Damping Characteristics of Aluminum Alloy Single Layer Spherical Latticed Shell[J]. Journal of Hunan University (Natural Sciences), 2020, 47(7): 84-92.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}