冗余六自由度并联隔振平台多维隔振性能研究

张兵,黄华,蔡佳敏,蒋子良,朱方正,汤少东,钱鹏飞

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 26-32.

PDF(1949 KB)
PDF(1949 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 26-32.
论文

冗余六自由度并联隔振平台多维隔振性能研究

  • 张兵,黄华,蔡佳敏,蒋子良,朱方正,汤少东,钱鹏飞
作者信息 +

Multi-dimensional isolation performances of a redundant 6DOF parallel vibration isolation platform

  • ZHANG Bing,HUANG Hua,CAI Jiamin,JIANG Ziliang,ZHU Fangzheng,TANG Shaodong,QIAN Pengfei
Author information +
文章历史 +

摘要

隔振平台能够抑制动载设备在转场运输及工作过程中受到的各种振动冲击,使其保持最佳的使用寿命和工作精度;针对应用于动载设备的隔振平台存在着负载质量轻、隔振维数少以及低频隔振效果不佳等问题,提出了一种液压冗余式、主被动复合支撑的六自由度并联隔振平台,结合并联隔振平台参数化的主被动混合隔振数学模型和模糊PID复合控制算法,针对其被动隔振性能、主被动混合隔振性能进行分析,仿真结果表明基于模糊PID复合控制的主被动混合隔振明显优于被动隔振,能够衰减90%以上的振动干扰,扩大了隔振频率的带宽。

Abstract

The vibration impact of the dynamic load equipment in the transit and working process can be suppressed by vibration isolation platform , so as to maintain the best service life and working accuracy. In view of the problems of light load, less vibration isolation dimension and low frequency vibration isolation effect in the vibration isolation platform applied to dynamic load equipment, a six degree of freedom parallel vibration isolation platform with hydraulic redundancy and active passive composite support was proposed. Combined the parametric active passive hybrid vibration isolation mathematical model of the platform with the fuzzy PID composite control algorithm, the passive and the hybrid vibration isolation performance were analyzed. The simulation results showed that hybrid vibration isolation based on the fuzzy PID composite control was obviously superior to the passive vibration isolation, which could attenuate more than 90% vibration interference and expand the bandwidth of vibration isolation frequency.

关键词

并联隔振平台 / 动力学 / 被动隔振 / 混合隔振

Key words

  / parallel isolation platform;dynamics;passive vibration isolation;hybrid vibration isolation

引用本文

导出引用
张兵,黄华,蔡佳敏,蒋子良,朱方正,汤少东,钱鹏飞. 冗余六自由度并联隔振平台多维隔振性能研究[J]. 振动与冲击, 2022, 41(2): 26-32
ZHANG Bing,HUANG Hua,CAI Jiamin,JIANG Ziliang,ZHU Fangzheng,TANG Shaodong,QIAN Pengfei. Multi-dimensional isolation performances of a redundant 6DOF parallel vibration isolation platform[J]. Journal of Vibration and Shock, 2022, 41(2): 26-32

参考文献

[1] Hauge G S, Campbell M E. Sensors and control of a space-based six-axis vibration isolation system[J]. Journal of Sound and Vibration, 2004, 269(3-5): 913-931.
[2] Kamesh D, Pandiyan R, Ashitava Ghosal. Modeling, design and analysis of low frequency platform for attenuating micro-vibration in spacecraft[J]. Journal of Sound and Vibration, 2010, 329(17): 3431-3450.
[3] Zhou N, Liu K. A Tunable High-Static-Low-Dynamic Stiffness Vibration Isolator[J]. Journal of Sound and Vibration, 2010, 329(9): 1254-1273.
[4] Mroz A, Orlowska A, Holnicki-Szulc J. Semi-active Damping of Vibrations[J]. Journal of Shock and Vibration, 2010, 17(2): 123-136.
[5] 杨庆超, 柴凯, 丰少伟, 等. 两自由度非线性隔振系统线谱混沌化控制技术研究[J]. 振动与冲击, 2020, 39(16):180-187.
YANG Qingchao, CHAI Kai, FENG Shaowei, et al. Line Spectra Chaotification of a 2DOF Nonlinear Vibration Isolation System[J]. Journal of Vibration and Shock, 2020, 39(16):180-187.
[6] 柴凯, 楼京俊, 朱石坚, 等. 两自由度非线性隔振系统的吸引子迁移控制[J]. 振动与冲击, 2018, 37(22):10-16. CHAI Kai, LOU Jingjun, ZHU Shijian, et al. Attractor Migration Control of a Two-Degree-of-Freedom Nonlinear Vibration Isolation System[J]. Journal of Vibration and Shock, 2018, 37(22):10-16.
[7] 李彦, 何琳, 帅长庚, 等. 磁悬浮主被动隔振系统自适应控制及非线性补偿[J]. 振动与冲击, 2015, 34(06):89-94.
LI Yan, HE Lin, SHUAI Changgen, et al. Adaptive Control and Nonlinear Compensation of Active and Passive Magnetic Suspension Vibration Isolation System[J]. Journal of Vibration and Shock, 2015, 34(06):89-94.
[8] Lee D O, Park G, Han J H. Hybrid isolation of micro vibrations induced by reaction wheels[J]. Journal of Sound and Vibration, 2016, 363: 1-17.
[9] Kong Y, Huang H. Vibration isolation and dual-stage actuation pointing system for space precision payloads[J]. Acta Astronautica, 2017, 143: 183-292.
[10] 刘小雨, 尹文生. 基于前馈通道相位补偿的隔振器振动控制[J]. 机械制造与自动化, 2018, 47(04):221-223+227.
LIU Xiaoyu, YIN Wensheng. Vibration Control of Isolator Based on Phase Compensation of Feed-forward Path[J]. Mechanical & Automatic, 2018, 47(04):221-223+227.
[11] 牛牧青, 杨斌堂, 杨诣坤, 等. 磁致伸缩主被动隔振装置中的磁机耦合效应研究[J]. 力学学报, 2019, 51 (02):324-332.
NIU Muqing, YANG Bintang, YANG Yikun, et al. Research on the Magneto-Mechanical Effect in Active and Passive Magnetostrictive Vibration Isolator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (02):324-332.
[12] Gan D, Dai J S, Dias J, et al. Joint force decomposition and variation in unified inverse dynamics analysis of a metamorphic parallel mechanism[J]. Meccanica, 2016, 51(7): 1583-1593.
[13] ZHANG B, WEI W, QIAN P F, et al. Research on the control strategy of hydraulic shaking table based on the structural flexibility[J]. IEEE ACCESS, 2019, (7): 43063-43075.
[14] Chen Y L, Chen Z R. A PID positioning controller with a curve fitting model based on RFID technology[J]. Journal of Applied Research and Technology, 2013, 11(2): 301-310.
[15] Koszewnik A, Troc K, Slowik M. PID Controllers Design Applied to Positioning of Ball on the Stewart Platform[J]. Acta Mechanica et Automatica, 2015, 8(4): 214-218.
[16] Wrat G, Bhola M, Ranjan P, et al. Energy saving and Fuzzy-PID position control of electro-hydraulic system by leakage compensation through proportional flow control valve[J]. ISA Transactions, 2020.
[17] Shao Z F, Tang X Q, Wang L P, et al.. A Fuzzy PID Approach for the Vibration Control of the FSPM[J]. International Journal of Advanced Robotic Systems, 2013, 10(1).
[18] Wang M F, Liu S J. Fuzzy-PID control of the 6-DOF deep-sea mining ship motion simulator[J].International Journal of Mechanisms and Robotic Systems, 2013, 1(2/3): 202-220.
[19] 王存堂, 刘烘托, 谢方伟, 等. 专家控制半主动悬架系统动态特性分析[J]. 自动化与仪表, 2018, 33(3): 1-4+13. WANG Cuntang, LIU Hongtuo, XIE Fangwei, et al. Analysis of dynamic characteristics of semi-active suspension based on expert system[J]. Automation & Instrumentation, 2018, 33(3): 1-4+13.

PDF(1949 KB)

Accesses

Citation

Detail

段落导航
相关文章

/