面向CFRP损伤检测的改进L1正则化EIT方法

范文茹,王驰

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 265-270.

PDF(1605 KB)
PDF(1605 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 265-270.
论文

面向CFRP损伤检测的改进L1正则化EIT方法

  • 范文茹,王驰
作者信息 +

Damage detection for CFRP based on the modified L1 regularization of EIT

  • FAN Wenru, WANG Chi
Author information +
文章历史 +

摘要

由于碳纤维复合材料(carbon fiber reinforced polymer, CFRP)具有导电特性,因此可利用电阻抗层析成像(electrical impedance tomography, EIT)技术实现结构损伤检测。考虑EIT电极位置、数量有限,以及电场软场特性的影响,其灵敏度矩阵呈现非均匀分布特征,导致场域内不同位置成像效果差别较大。本文基于传统L1正则化的边缘锐化特性,提出了一种改进L1正则化方法。该方法通过分析损伤重建电导率分布规律,发现其在各邻域梯度分布的特征,并利用此特征保留L1正则化可能滤除的有效数据,在保证重建图像锐利边缘的同时,改善了不均匀灵敏度分布导致的区域成像精度差别。为验证所提出方法的有效性,仿真中设计了不同类型、不同相对位置的损伤模型,并且通过搭建的16电极EIT测试系统对损伤CFRP样品进行测试。仿真和实验结果表明,改进后的L1正则化方法不仅能重建更多位置上的损伤图像,而且不同程度的提高了各类损伤重建图像的精度。

Abstract

Due to the conductivity of carbon fiber reinforced polymer/plastic (CFRP), electrical impedance tomography (EIT) can be used to detect it’s structural damage. Considering the influence of EIT electrode position, limited number, and soft field characteristics of electric field, the sensitivity matrix presents the characteristic of non-uniform distribution, resulting in the great difference of imaging effect between different positions in the field. Based on the edge sharpening characteristics of traditional L1 regularization, an improved L1 regularization method is proposed in this paper. By analyzing the conductivity distribution feature of damage reconstruction, the proposed method utilize the characteristics of its gradient distribution in each neighborhood to retain the effective data that L1 regularization may filter out. Therefore, the sharp edge of reconstructed image can be retained and the regional imaging accuracy difference caused by non-uniform sensitivity distribution is decreased. In order to verify the effectiveness of the proposed method, damage models of different types and relative positions were designed in the simulation. In addition, the damaged CFRP samples were tested by the 16-electrode EIT test system. Simulation and experimental results show that the modified L1 regularization method can not only reconstruct more damage images at different positions, but also improve the accuracy of various damage reconstruction images to some extent.

关键词

碳纤维复合材料(CFRP) / 损伤评估 / 电阻抗层析成像(EIT) / 改进L1正则化 / 图像重建

Key words

carbon fiber reinforced polymer/plastic (CFRP) / damage estimation / electrical impedance tomography (EIT) / modified L1 regularization / image reconstruction

引用本文

导出引用
范文茹,王驰. 面向CFRP损伤检测的改进L1正则化EIT方法[J]. 振动与冲击, 2022, 41(2): 265-270
FAN Wenru, WANG Chi. Damage detection for CFRP based on the modified L1 regularization of EIT[J]. Journal of Vibration and Shock, 2022, 41(2): 265-270

参考文献

[1] 马付建, 亓博超, 刘宇, 杨大鹏, 沙智华, 张生芳. 纤维角度对CFRP材料超声磨削性能的影响分析[J]. 大连交通大学学报, 2020, 41(03): 22-27.
MA F J, Qi B C, Liu Y, Yang D P, Sha Z H and Zhang S F. Influence Analysis of Fiber Angle on Ultrasonic Grinding Performance for CFRP[J]. Journal of Dalian Jiaotong University, 2020, 41(03): 22-27.
[2] 王喆, 杨辰龙, 周晓军, 滕国阳. 基于超声背散射信号递归定量分析的CFRP局部孔隙缺陷识别方法[J]. 振动与冲击, 2019, 38(21): 229-235.
Wang Z, Yang C X, Zhou X J and Teng G Y. Identification method for CFRP local pore defects based on recursive quantitative analysis of ultrasonic backscattering signal[J]. JOURNAL OF VIBRATION AND SCOCK, 2019, 38(21): 229-235.
[3] Yu F, and Okabe Y. Linear Damage Localization in CFRP laminates Using One Single Fiber-Optic Bragg Grating Acoustic Emission Sensor[J]. Composite Structures, 2020, 238: 11192.
[4] Tabrizi I E, Khan R M, Massarwa E, Zanjani J S, Ali H Q, Demir E, and Yildiz M. Determining tab material for tensile test of CFRP laminates with combined usage of digital image correlation and acoustic emission techniques[J]. Composites Part A-applied Science and Manufacturing, 2019, 127: 105623.
[5] 王强, 胡秋平, 邱金星, 裴翠祥, 刘铭, 李欣屹, 周洪斌. 航空复合材料内部缺陷差动式激光红外热成像检测[J]. 红外与激光工程, 2019, 48(05): 127-133.
Wang Q, Hu Q P, Qiu J X, Pei C X, Liu M, Li X Y and Zhou H B. Detection of internal defects in aviation composites with differential laser infrared thermal imaging[J]. INFRARED AND LASER ENGINEERING, 2019, 48(05): 127-133.
[6] 郭兴旺, 吕珍霞, 高功臣. CFRP层压板脉冲热像检测的图像重建与增强[J]. 红外技术, 2006(05): 299-305.
Guo X W, Lv Z X and Gao G C. Image Reconstruction and Enhancement of Pulsed Infrared Thermography of CFRP Laminates[J]. INFRARED TECHNOLOGY, 2006(05): 299-305.
[7] Dilonardo E, Nacucchi M, De Pascalis F, Zarrelli M, and Giannini C. High resolution X-ray computed tomography: A versatile non-destructive tool to characterize CFRP-based aircraft composite elements[J]. Composites Science and Technology, 2020, 192: 108093.
[8] Schilling P J, Karedla B R, Tatiparthi A K, Verges M A, and Herrington P D. X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites[J]. Composites Science and Technology, 2005, 65(14): 2071-2078.
[9] Schueler R, Joshi S P, and Schulte K. Conductivity of CFRP as a tool for health and usage monitoring[J]. Smart Structures and Materials, 1997, 3041: 417-426.
[10] Tallman T N, Gungor S, Wang K W, and Bakis C E. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography[J]. Smart Materials and Structures, 2014, 23(4): 045034.
[11] Selvakumaran L, Long Q, Prudhomme S, and Lubineau G. On the detectability of transverse cracks in laminated composites using electrical potential change measurements[J]. Composite Structures, 2015, 121: 237-246.
[12] Malinowski P, Wandowski T, and Ostachowicz W. The use of electromechanical impedance conductance signatures for detection of weak adhesive bonds of carbon fibre–reinforced polymer[J]. Structural Health Monitoring-an International Journal, 2015, 14(4): 332-344.
[13] Zarafshani A, Chatwin C, Bach T, and Zheng B. Using planar electrical impedance tomography as a structural health monitoring method to detect and evaluate the damage to CFRP composite[C]// 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS) . Dayton : IEEE ,2016.
[14] Almuhammadi K, Bera T K, and Lubineau G. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates[J]. Composite Structures, 2017, 168: 510-521.
[15] Cagáň J, and Michalcová L. Impact Damage Detection in CFRP Composite via Electrical Resistance Tomography by Means of Statistical Processing[J]. Journal of Nondestructive Evaluation ,2020, 39, 38.
[16] Schueler R, Joshi S P, and Schulte K. Damage detection in CFRP by electrical conductivity mapping[J]. Composites Science and Technology, 2001, 61(6): 921-930.
[17] Almuhammadi K, Selvakumaran L, Alfano M, Yang Y, Bera T K, and Lubineau G. Laser-based surface preparation of composite laminates leads to improved electrodes for electrical measurements[J]. Applied Surface Science, 2015, 359, 388-397.
[18] Almuhammadi K, Yudhanto A, and Lubineau G. On the anisotropic behavior of electrodes for electrical‐based monitoring of CFRP laminated composites[J]. Polymer Composites, 2019, 40(5): 2061-2066.
[19] Almuhammadi K, Yudhanto A, and Lubineau G. Real-time electrical impedance monitoring of carbon fiber–reinforced polymer laminates undergoing quasi-static indentation[J]. Composite Structures, 2019, 207: 255-263.
[20] Nonn S, Schagerl M, Zhao Y, Gschossmann, S, and Kralovec C. Application of electrical impedance tomography to an anisotropic carbon fiber-reinforced polymer composite laminate for damage localization[J]. Composites Science and Technology, 2018, 160: 231-236.
[21] Zhou B, Gao L, and Dai Y H. Gradient Methods with Adaptive Step-Sizes[J]. Computational Optimization and Applications, 2006, 35: 69–86.

PDF(1605 KB)

Accesses

Citation

Detail

段落导航
相关文章

/