过流条件下泵站管道振动响应混沌特性分析

张建伟1,张翌娜2,程梦然1,王立彬1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 290-296.

PDF(1732 KB)
PDF(1732 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 290-296.
论文

过流条件下泵站管道振动响应混沌特性分析

  • 张建伟1,张翌娜2,程梦然1,王立彬1
作者信息 +

Chaotic characteristic analysis of the vibration responses of pumping station pipelines under overflow conditions

  • ZHANG Jianwei1, ZHANG Yina2, CHENG Mengran1, WANG Libin1
Author information +
文章历史 +

摘要

为了验证泵站管道运行中存在混沌特性,明晰管道结构产生混沌特性的激励源,以某灌区泵站管道为研究对象,利用饱和关联维数、最大Lyapunov指数等指标对管道振动响应的混沌特性进行分析与验证,采用改进的变分模态分解(improved variatronal mode decomposition, IVMD)对管道振动响应进行多尺度混沌分析,得出使管道振动具有混沌特性的激励源。研究表明:泵站管道不同工况下各测点振动响应均具有混沌特性,其中管道轴向及岔管处测点振动的混沌特性较强。管道振动响应经IVMD分解后,代表输水湍流脉动激励的IMF1分量呈现较低维的混沌吸引子,而代表机组运行振动激励的其余分量无混沌特征,表明泵站管道振动时,输水湍流激励使其振动具有混沌特性,机组运行产生的振动激励掩盖了管道振动中的混沌特性,增加了管道振动的不确定性。研究结果为探索泵站管道的混沌特性及激励源特征提供理论基础。

Abstract

Chaos is a unique mechanical phenomenon in the vibrations of strongly nonlinear structures. At present , the research on chaotic characteristics of pipeline systems mostly focuses on oil-gas pipelines and the mathematical models of pipelines with specific nonlinear constraints, while the chaotic characteristics of pumping station pipeline system are seldom analyzed. And most of former research achievements only analyzed the chaotic characteristics of the vibration system but did not further explore the vibration excitation which caused the chaos. In order to verify the chaotic characteristics and to clarify the chaotic excitation source in the pipeline structure, the chaotic characteristics of pipeline vibration response is analyzed and validated by using the saturation correlation dimension and the largest Lyapunov exponent, and the multi-time-scale chaotic analysis of pipeline vibration response is carried out by using the improved variational mode decomposition (IVMD). The chaotic characteristics of the vibration at the bifurcation are enhanced by the sudden expansion of pipe diameter at the bifurcation and the impact of water heads at different flow velocities. The results show that the vibration response of each measuring point of the pumping station pipeline under different working conditions have chaotic characteristics, and the chaotic characteristics of axial points and bifurcate pipe points are relatively strong. After IVMD adopted in pipeline vibration response, the intrinsic mode function (IMF) component representing the water pulsation excitation presents a lower-dimensional chaotic attractor, while the other components on behalf of the unit vibration excitation have no chaotic characteristics, which indicates that the water pulsation excitation makes the vibration of pump station pipelines chaotic, and the unit operation covers the chaotic characteristics of pipeline vibration and increases its uncertainty. The results provide a theoretical basis for exploring the chaotic characteristics and excitation source characteristics of pumping station pipelines.

关键词

泵站管道 / 混沌特性 / IVMD / 关联维数 / Lyapunov指数

Key words

 pumping station pipeline / chaotic characteristic / improved variatronal mode decomposition(IVMD) / correlation dimension / Lyapunov exponent

引用本文

导出引用
张建伟1,张翌娜2,程梦然1,王立彬1. 过流条件下泵站管道振动响应混沌特性分析[J]. 振动与冲击, 2022, 41(2): 290-296
ZHANG Jianwei1, ZHANG Yina2, CHENG Mengran1, WANG Libin1. Chaotic characteristic analysis of the vibration responses of pumping station pipelines under overflow conditions[J]. Journal of Vibration and Shock, 2022, 41(2): 290-296

参考文献

[1] Lu H, Huang K, Wu S. Vibration and Stress Analyses of Positive Displacement Pump Pipeline Systems in Oil Transportation Stations[J]. Journal of Pipeline Systems Engineering & Practice, 2016, 7(1).
[2] Pergushev L P, Fattakhov R B, Sakhabutdinov R Z, et al. Analysis of operation of booster pumping station[J]. Neftyanoe Khozyaistvo - Oil Industry, 2005(5):134-137.
[3] 江琦. 梯级泵站管道耦联振动特性与振动控制研究[D]. 郑州:华北水利水电大学, 2017.
Jiang Qi. Research on Coupled Vibration Characteristics and Vibration Control of Pipeline of Cascade Pumping Station[D]. Zheng Zhou: North China University of Water Resources and Electric Power, 2017.
[4] Paı̈Doussis M P, Li G X. Pipes Conveying Fluid: A Model Dynamical Problem[J]. Journal of Fluids & Structures, 1993, 7(2):137–204.
[5] Tang D M, Dowell E H. Chaotic oscillations of a cantilevered pipe conveying fluid[J]. Journal of Fluids & Structures, 1988, 2(3):263-283.
[6] Sinir B G. Bifurcation and chaos of slightly curved pipes[J]. Mathematical & Computational Applications, 2007, 15(15):490-502.
[7] Zhao D, Liu J, Wu C Q. Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(8):1017-1032.
[8] 吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用[M]. 武汉大学出版社, 2002.
Lv JH, Lu JA. Chaotic Time Series Analysis and Its Application. Wuhan University Press. 2002.
[9] 姜万录,张淑清, 王益群. 基于混沌和小波的故障信息诊断[M]. 国防工业出版社, 2005.
Jiang WL., Zhang SQ. Chaos and Wavelet Based Fault Information Diagnosis. National Defense Industry Press.2005.
[10] Rosenstein M T, Collins J J, Luca C J D. A practical method for calculating largest Lyapunov exponents from small data sets[M]. Elsevier Science Publishers B. V. 1993.
[11] Dragomiretskiy K, ZossoD. Variational mode decomposition[J]. Transactions on Signal Processing 2014, 62(3):531-544.
[12] 张宁, 朱永利, 高艳丰,等. 基于变分模态分解和概率密度估计的变压器绕组变形在线检测方法[J]. 电网技术, 2016, 40(1): 297-302.
Zhang N, Zhu YL, Gao YF. An On-Line Detection Method of Transformer Winding Deformation Based on Variational Mode Decomposition and Probability Density Estimation. Power System Technology. 2016, 40(1): 297-302.
[13] 刘长良,闫萧. 基于工况辨识和变分模态分解的风电机组滚动轴承故障诊断[J]. 动力工程学报, 2017, 37(4):273-278.
Liu CL, Yan X. Fault diagnosis of a wind turbine rolling bearing based on variational mode decomposition and condition identification. Journal of Chinese Society of Power Engineering. 2017, 37(4):273-278.
[14] Hestenes M R. Multiplier and gradient methods[J]. Journal of optimization theory and applications. 1969, 4(5): 303-320.
[15] 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81.
Tang GJ, Wang XL. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing. Journal of xi,an jiaotong university. 2015, 49(5): 73-81.
[16] 胡爱军. Hilbert-Huang变换在旋转机械振动信号分析中的应用研究[D]. 保定: 华北电力大学, 2008.
Hu AJ. Research on the application of Hilbert-huang transform in vibration signal analysis of rotating machinery. Baoding, North China Electric Power University. 2008.
[17] Grassberger P, Procaccia I. Measuring Strangeness Strange Attractors[J]. Physica D Nonlinear Phenomena, 1983, 9(1-2):189-208.
[18] 张建伟, 江琦, 王涛. 基于原型观测的梯级泵站管道振源特性分析[J]. 农业工程学报, 2017, 33(1):77-83.
Zhang JW, Jiang Q, Wang T. Analysis of vibration characteristics of pipeline of trapezoid pumping station based on prototype observation. Transactions of the Chinese Society of Agricultural Engineering. 2017, 33(1): 77-83.

PDF(1732 KB)

Accesses

Citation

Detail

段落导航
相关文章

/