非对称制动压力对汽车低频制动尖叫的影响

吴奕东,陈晶艳,余家皓

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 297-304.

PDF(1453 KB)
PDF(1453 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 297-304.
论文

非对称制动压力对汽车低频制动尖叫的影响

  • 吴奕东,陈晶艳,余家皓
作者信息 +

Influence of unsymmetrical brake pressure on the low frequency squeal of an automobile brake

  • WU Yidong, CHEN Jingyan, YU Jiahao
Author information +
文章历史 +

摘要

针对汽车制动尖叫问题,建立汽车制动器有限元模型并基于能量馈入法开展其非对称性和对称性制动压力下的复模态数值仿真。结果表明,耦合子系统的相对馈入能量能直接反映出各子部件的振型情况,当整体系统相对馈入能量的值接近0时,对应频率的复模态就无法被激发。对称性压力能够有效地降低活塞-卡钳的相对馈入能量,使得制动器的复模态振型以制动盘更高阶的面外振动为主,系统的复特征频率从3000Hz提高到5300Hz。

Abstract

Aiming at the problem of automobile brake squeal, the finite element model of automobile brake was established and the complex modal numerical simulation was carried out under asymmetrical and symmetrical brake pressure based on the energy feed-in method. The results show that the relative feed-in energy of the coupling subsystem can reflect the mode shape of the components. When the feed-in energy of the dual coupling subsystem is close to zero, the complex mode cannot be excited at the corresponding frequency. Symmetrical brake pressure can effectively reduce the relative feed-in energy of the piston caliper, and make the complex mode of the brake take the higher-order out-plane vibration of the brake disc as the main mode, so as to improve the complex characteristic frequency from 3000Hz to 5300Hz.

关键词

制动器 / 制动尖叫 / 制动压力 / 复模态 / 相对馈入能量

Key words

Brake / Squeal / Brake pressure / Complex mode / Relative feed-in energy

引用本文

导出引用
吴奕东,陈晶艳,余家皓. 非对称制动压力对汽车低频制动尖叫的影响[J]. 振动与冲击, 2022, 41(2): 297-304
WU Yidong, CHEN Jingyan, YU Jiahao. Influence of unsymmetrical brake pressure on the low frequency squeal of an automobile brake[J]. Journal of Vibration and Shock, 2022, 41(2): 297-304

参考文献

[1]   Kinkaid N M, O"Reilly O M, Papadopoulos P. Automotive disc brake squeal[J]. Journal of Sound & Vibration, 2003, 267(1):105-166.
[2]   Mottershead J E. Vibration and Friction-induced Instability in Disks[J]. Shock & Vibration Digest, 1998, 30(1):14-31.
[3]   Ibrahim R A, Madhavan S, Qiao S, et al. Experimental investigation of friction-induced noise in disc brake systems[J]. International Journal of Vehicle Design, 2000, 23(3/4):218-240.
[4]   管迪华, 宿新东. 制动振动噪声研究的回顾、发展与评述[J]. 工程力学, 2004, 21(4):150-155.
Guan Di-hua , Su Xin-dong.An overview on brake vibrations and noise[J]. ENGINEERING MECHANICS,2004,21(4):150-155
[5]   吕红明, 张立军, 余卓平. 汽车盘式制动器尖叫研究进展[J]. 振动与冲击, 2011(04):10-16.
Lv Hong-ming,Zhang Li-jun,Yu Zhuo-ping.A review of automotive disc brake squeal [J]. JOURNAL OF VIBRATION AND SHOCK, 2011(04):10-16
[6]   Ghazaly N M, Ahmed I, El-Sharkawy M. A Review of Automotive Brake Squeal Mechanisms[J]. Journal of Mechanical Design & Vibration, 2014, 1(1): 5-9.
[7]   Huynh L H T, Dittrich A, DRÁB O. Model Predict Vibration and Noise of Disc Brake[J]. Applied Mechanics & Materials, 2012, 232:461-464.
[8]   Nakae T , Ryu T , Sueoka A , et al. Squeal and chatter phenomena generated in a mountain bike disc brake[J]. Journal of Sound & Vibration, 2011, 330(10):2138-2149.
[9]   Sergienko V P, Bukharov S N. Vibration and noise in brake systems of vehicles. Part 2: Theoretical Investigation Techniques[J]. Journal of Friction & Wear, 2009, 30(3):216-226.
[10]   Du Y, Wang Y. Squeal Analysis of a Modal-Parameter-Based Rotating Disc Brake Model[J]. International Journal of Mechanical Sciences, 2017, 131.
[11]   Nacivet S, Sinou J J. Modal Amplitude Stability Analysis and its application to brake squeal[J]. Applied Acoustics, 2017, 116:127–138.
[12]   Kang J. Finite element modelling for the investigation of in-plane modes and damping shims in disc brake squeal[J]. Journal of Sound & Vibration, 2012, 331(9):2190-2202.
[13]   黄泽好,刘通,雷伟,万鑫. 盘式制动器噪声、振动与声振粗糙度特性的复模态评价[J]. 兵工学报, 2016, 30(7):1275-1281.
Huang Ze-hao, Liu Tong, Lei Wei, Wan Xin. Complex Modal Evaluation of NVH Characteristics of Disc Brake. ACTA ARMAMENTARII, 2016, 30(7):1275-1281.
[14]   Kim C, Zhou K. Analysis of automotive disc brake squeal considering damping and design modifications for pads and a disc[J]. International Journal of Automotive Technology, 2016, 17(2):213-223.
[15]   Nacivet S, Sinou J. Modal Amplitude Stability Analysis and its application to brake squeal[J]. Applied Acoustics, 2017, 116:127–138.
[16]   吕辉, 于德介, 谢展, 等. 基于响应面法的汽车盘式制动器稳定性优化设计[J]. 机械工程学报, 2013, 49(9):55-60.
Lv Hui, Yu De-jie, Xie Zhan, et al. Optimization of vehicle disc brakes stability based on response surface method[J]. Chinese Journal of Mechanical Engineering, 2013, 49(9):55-60.
[17]   吕辉, 于德介, 陈宁, 等.引入不确定参数的汽车盘式制动器振动稳定性分析[J].振动工程学报, 2014, 27(6):104-110
Lv Hui, Yu De-jie, Chen Ning, et al. Analysis of automotive disc brake systems vibration stability by introducing uncertain parameters[J]. Journal of Vibration Engineering, 2014, 27(6):104-110
[18]   管迪华, 杜永昌, 王霄锋, 李清. 对一盘式制动器高频尖叫及抑制的分析[J].工程力学,2014,31(12):217-222
Guan Di-hua, Du Yong-chang, Wang Xiao-feng, Li Qing. Analysis of a disc brake high frequency squeal and reduction[J].Engineering Mechanics,2014,31(12):217-222.
[19]   Guan D , Huang J . The method of feed-in energy on disc brake squeal[J]. Journal of Sound and Vibration, 2003, 261(2):297-307.
[20]   Guan D, Du Y, Wang X . Effect of pad shapes on high-frequency disc brake squeal[J]. International Journal of Vehicle Design, 2016, 72(4):354.
[21]   Martin N J, Rice J L. Examining the use of Concept Analysis and Mapping Software for Renewable Energy Feed-In Tariff Design[J]. Renewable Energy, 2017, 113:211-220.
[22]   Lyu H, Stephen J W, Chen C, et al. Analysis of Friction-Induced Vibration Leading to Brake Squeal Using a Three Degree-of-Freedom Model[J]. Tribology Letters, 2017, 65(3):105.
[23]   张立军, 刁坤, 孟德建, 等. 盘-销系统摩擦尖叫的时变性:发生机理与关键影响因素[J]. 机械工程学报, 2013(14):103-109.
Zhang Li-jun, Diao Kun, Meng De-jian, et al. Time-varying Characteristics of Frictional Squeal in Pin-on-disc System: Generation Mechanism and Key Impact Factors, JOURNAL OF MECHANICAL ENGINEERING, 2013(14):103-109.
[24]   Chen F. Disc Brake Squeal: An Overview [M]. SAE International. 2007.
[25]   Bakar A R A, Ouyang H. Recent Studies of Car disc Brake Squeal[M]// New Research on Acoustics. Nova Science Publishers, 2008.

PDF(1453 KB)

672

Accesses

0

Citation

Detail

段落导航
相关文章

/