针对双臂机器人绝对精度和协作精度的指标要求,基于激光跟踪仪测量的双臂末端三靶球点位数据,使用极小极大的搜索算法,提出了鲁棒的双臂机器人运动学几何参数校准方法。该方法分两步,分别对几何参数和基坐标准直进行校准:首先,分别对左右两臂的几何参数进行校准。在左(右)臂末端安装三个靶球,以三个测量点中的最差绝对定位误差为指标函数建立非线性优化问题,确保校准结果的鲁棒性并提高机器人末端的定向精度,采用二次序列规划法求解。然后,对左右两臂间的坐标准直进行校准。以三靶球中左右臂间的最差协作定位误差为指标函数,采用极小极大算法提升双臂间的协作位姿精度。
Abstract
Aiming at the requirements of the absolute accuracy and cooperation accuracy of dual-arm robots, based on the data of the three-target ball position measured by a laser tracker, using a minimax search algorithm, a robust calibration method for kinematic parameters of the dual-arm robot is proposed. The method is divided into two steps: Firstly, the geometric parameters of the left and right arms are calibrated separately. Three target balls are installed at the end of the left (right) arm, and the worst absolute positioning error of the three measurement points is used as an index function to ensure the robustness of the calibration process and the orientation accuracy of the end-point can also be improved. The quadratic sequence programming method is used to solve the nonlinear optimization problem with inequality constraints. Secondly, the transformation between the left and right arms can be identified. Taking the worst collaborative positioning error between the left and right arms in the three target ball as the target function, and the minimax algorithm is used to improve the cooperative pose accuracy between the two arms.
关键词
运动学校准 /
协作精度 /
极小极大算法 /
双臂机器人
{{custom_keyword}} /
Key words
kinematic calibration /
Cooperation accuracy /
Minimax algorithm /
Dual-arm robot.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 白海龙. 基于POE方法的工业机器人运动学标定研究[D].哈尔滨工业大学, 2014.
Bai H. Research on Industrial Robot Kinematics Calibration Based on POE Method[D]. Harbin Institute of Technology, 2014.
[2] Wu L, Yang X, Chen K, Ren H. A Minimal POE-Based Model for Robotic Kinematic Calibration With Only Position Measurements[J]. Transactions on Automation Science and Engineering, 2015.
[3] 张虎. 面向标定的工业机器人建模及参数辨识方法研究[D]. 哈尔滨工业大学, 2015.
Zhang H. Research on Calibration-oriented Industrial Robot Modeling and Parameter Identification Method[D]. Harbin Institute of Technology, 2015.
[4] 陈钢, 贾庆轩, 李彤, 孙汉旭. 基于误差模型的机器人运动学参数标定方法与实验[J], 机器人, 2012, 34(6):680-688.
Chen G, Jia Q, Li T, Sun H. Calibration Method and Experiments of Robot Kinematics Parameters Based on Error Model[J], Robot, 2012, 34(6):680-688.
[5] 潘伯钊, 宋轶民, 王攀峰,等. 基于激光跟踪仪的混联机器人快速零点标定方法[J]. 机械工程学报, 2014, 050(001):31-37.
Pan B, Song Y, Wang P, et.al. Laser Tracker Based Rapid Home Position Calibration of a Hybrid Robot[J]. Journal of Mechanical Engineering, 2014, 050(001):31-37.
[6] 皇甫亚波, 杭鲁滨, 程武山,等. 基于LM算法的机器人运动学标定[J]. 轻工机械, 2017,(4):1-7.
Huangfu Y, Hang L, Cheng W, et.al. Kinematic Calibration for Robot Based on LM Algorithm[J]. Light Industry Machinery,2017,(4):1-7.
[7] Nguyen H, Zhou J , Kang H. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network[J]. Neurocomputing, 2015, 151(3):996-1005.
[8] 杜亮, 张铁, 戴孝亮. 激光跟踪仪测量距离误差的机器人运动学参数补偿[J]. 红外与激光工程, 2015(08):119-125.
Du L, Zhang T, Dai X. Robot kinematic parameters compensation by measuring distance error using laser tracker system[J]. Infrared and Laser Engineering, 2015(08):119-125.
[9] Mao C, Li S, Chen Z, and et al. A Novel Algorithm for Robust Calibration of Kinematic Manipulators and its Experimental Validation, IEEE Access, 2019, 7: 90487 - 90496.
[10] Xu W , Dongsheng L , Mingming W . Complete calibration of industrial robot with limited parameters and neural network[C]// 2016 IEEE International Symposium on Robotics and Intelligent Sensors. 2016.
[11] Nubiola A , Bonev I A . Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1):236-245.
[12] Zhang X , Song Y , Yang Y , et al. Stereo vision based autonomous robot calibration[J]. Robotics and Autonomous Systems, 2017, 93:43-51.
[13] Lynch K M, Park F C, Modern Robotics: Mechanics, Planning, and Control[M], London, UK: Cambridge University Press, 2017.
[14] Mao C, Li S, Chen Z, et al. Robust Kinematic Calibration for Improving Collaboration Accuracy of Dual-arm Manipulators with Experimental Validation[J]. Measurement, 2020.
[15] 席少霖. 非线性最优化方法[M]. 高等教育出版社, 1992.
Xi S. Nonlinear optimization method[M]. Higher Education Press, 1992.
[16] Walter F. Mascarenhas. The BFGS method with exact line searches fails for non-convex objective functions[J]. Mathematical Programming, 2004, 99(1):49-61.
[17] Francisco Facchinei, Christian Kanzow, Simone Sagratella. Soving Quasi-variational inequalities via their KKT-conditions[J]. Mathematical Programming, 2014, 144(1-2):369-412.
[18] Boyd S, and Vandenberghe L, Convex optimization, London, UK: Cambridge University Press, 2004.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}