爆破地震荷载作用下埋地燃气管道动力响应尺寸效应研究

赵珂1,蒋楠1,2,周传波1,姚颖康2,3,朱斌1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 64-73.

PDF(1820 KB)
PDF(1820 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 64-73.
论文

爆破地震荷载作用下埋地燃气管道动力响应尺寸效应研究

  • 赵珂1,蒋楠1,2,周传波1,姚颖康2,3,朱斌1
作者信息 +

Size effect on the dynamic response of buried gas pipelines under blasting seismic loads

  • ZHAO Ke1,JIANG Nan1,2,ZHOU Chuanbo1,YAO Yingkang2,3,ZHU Bin1
Author information +
文章历史 +

摘要

基于量纲分析理论,分析既定爆破地震作用下影响埋地燃气管道振动速度的物理量,推导得出反映管道尺寸效应的爆破振动速度预测公式。结合全尺度埋地球墨铸铁燃气管道下穿爆破试验,建立简化模型计算分析并通过现场实测数据进行验证。采用已验证模型及参数,考虑武汉地区常见管道类型及埋设条件,分别建立不同管道尺寸(不同管道直径、不同径厚比)的数值模型,研究埋地燃气管道尺寸效应影响下的爆破地震动力响应特征。研究结果表明:在爆破地震波作用下,管道截面峰值合振速(peak particle velocity ,PPV)和von-Mises应力均出现在迎爆侧;管道单元峰值合振速和von-Mises应力随管道直径的增加而减小,随管道径厚比的增大而增大;基于地表控制振速与管道直径存在的对应关系,提出城区常见DN700(公称直径700mm)、DN800、DN900、DN1000、DN1200管道地表控制振速为分别为9.16cm/s、8.26cm/s、8.10cm/s、7.95cm/s、7.04cm/s;量纲分析得出管道峰值von-Mises应力和管道尺寸之间的公式和允许径厚比对管道的实际生产具有一定的指导意义。

Abstract

Based on the dimensional analysis theory and analysis of the physical quantities affected the vibration velocity of buried gas pipeline under the given blasting earthquake, the blasting vibration velocity prediction formula that reflected the pipe size effect was deduced. Combined with the full-scale buried earth graphite cast iron gas pipeline downburst test, the simplified model was established for calculation and verified by the field measured data. Numerical models of different pipe sizes (different pipe diameters, different diameter-thickness ratios) were established with verified models and parameters to study the dynamic response characteristics of buried gas pipelines in consideration of the common pipeline types and embedding conditions in Wuhan. The results show that under the action of blasting seismic wave, the peak particle velocity (PPV) and the peak particle effective stress (PES) of pipeline cross section appear on the burst side. The PPVand PES decrease with the increase of pipe diameter and increase with the increase of pipe diameter-thickness ratio. There is a corresponding relationship between the PPVof the surface and the diameter of pipeline. On the basis of the corresponding relation between surface controlled vibration velocity and pipe diameter, it is proposed that the surface control vibration speeds of common pipeline DN700(nominal diameter 700 mm), DN800, DN900, DN1000 and DN1200 are 9.16 cm/s、8.26cm/s、8.10cm/s、7.95cm/s、7.04cm/s respectively. On the basis of the dimensional analysis, the formula between the peak von-Mises stress of the pipeline and the pipeline size and the allowable diameter-thickness ratio have certain guiding significance for the actual production of the pipeline.

关键词

爆破振动 / 燃气管道 / 尺寸效应 / 量纲分析 / 动力响应

Key words

blasting vibration / gas pipeline / size effect / dimensional analysis / dynamic response

引用本文

导出引用
赵珂1,蒋楠1,2,周传波1,姚颖康2,3,朱斌1. 爆破地震荷载作用下埋地燃气管道动力响应尺寸效应研究[J]. 振动与冲击, 2022, 41(2): 64-73
ZHAO Ke1,JIANG Nan1,2,ZHOU Chuanbo1,YAO Yingkang2,3,ZHU Bin1. Size effect on the dynamic response of buried gas pipelines under blasting seismic loads[J]. Journal of Vibration and Shock, 2022, 41(2): 64-73

参考文献

[1] Kouretzis G P, Bouckovalas G D, Gantes C J. Analytical calculation of blast-induced strains to buried pipelines [J]. International Journal of Impact Engineering, 2007, 34(10): 1683-1704.
[2] Mohamed A M E, Mohamed E E A. Quarry blasts assessment and their environmental impacts on the nearby oil pipelines, southeast of Helwan City, Egypt [J]. NRIAG Journal of Astronomy and Geophysics, 2013, 2(1): 102-115.
[3] 王复明,方宏远,李斌,等. 交通荷载作用下埋地承插口排水管道动力响应分析[J]. 岩土工程学报, 2018, 40(12): 2274-2280.
WANG Fu-ming, FANG Hong-yuan, LI Bin, et al. Analysis of dynamic response of buried drainage pipe under traffic load[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2274–2280.
[4] XIA Y Q, JIANG N, ZHOU C, et al. Safety assessment of upper water pipeline under the blasting vibration induced by Subway tunnel excavation [J]. Engineering Failure Analysis, 2019, 104: 626-642.
[5] Abedi A S, Hataf N, Ghahramani A. Analytical solution of the dynamic response of buried pipelines under blast wave [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88(Complete): 301-306.
[6] Kan Wang, Xinming Qian, Zhenyi Liu. Experimental and numerical investigations on predictor equations fordetermining parameters of blasting-vibration on underground gas pipe networks [J]. Process Safety and Environmental Protection, 2020, 133: 315–331.
[7] Scott A. Ashford, Teerawut Juirnarongrit. Response of single piles and pipelines in liquefaction–induced lateral spreads using controlled blasting [J]. Earthquake Engineering and Engineering Vibration, 2002, 1(2), 181-193.
[8] 钟冬望,黄雄,司剑峰,等. 爆破荷载作用下埋地钢管的动态响应实验研究[J]. 爆破, 2018, 35(02): 19-25.
ZHONG Dong-wang, HUANG Xiong, SI Jian-feng, et al. Experimental study on dynamic response of buried pipeline under blasting loads [J]. Blasting, 2018, 35(02): 19-25.
[9] Nan Jiang, Tan Gao, Chuanbo Zhou, Xuedong Luo. Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel [J]. Tunneling and Underground Space Technology incorporating Trenchless Technology Research, 2018, 81: 590–601.
[10] 喻军,刘松玉,童立元. 浅埋隧道爆破振动空洞效应[J]. 东南大学学报(自然科学版), 2010, 40(01): 180-183.
YU Jun, LIU Song-yu, TONG Li-yuan. Hollow effect induced by blasting vibration in shallow tunnels [J]. Journal of southeast university (Natural Science Edition), 2010, 40(01): 180-183.
[11] 蒋楠,周传波,平雯,等.岩质边坡爆破振动速度高程效应 [J]. 中南大学学报:自然科学版,2014,45(01): 237-243.
JIANG nan, ZHOU Chuan-bo, Ping Wen, et al. Altitude effect of blasting vibration velocity in rock slopes[J]. Journal of Central South University(Science and Technology), 2014, 45(01): 237-243.
[12] 张震,周传波,路世伟,等. 爆破振动作用下邻近埋地混凝土管道动力响应特性 [J]. 哈尔滨工业大学学报,2017,46(9):79–84.
ZHANG Zhen, ZHOU Chuan-bo, LU Shi-wei, et al. Dynamic response characteristics of adjacent buried concrete pipeline subjected to blasting vibration [J]. Journal of Harbin Institute of Technology, 2017, 46(9):79–84.
[13] 朱斌,蒋楠,贾永胜,等. 下穿燃气管道爆破振动效应现场试验研究 [J]. 岩石力学与工程学报,2019, 38(12): 2582-2592.
ZHU Bin, JIANG Nan, JIA Yong-sheng, et al. Field Experiment on Blasting Vibration Effect of Underpass Gas Pipeline [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2582-2592.
[14] 韩俊艳,侯本伟,钟紫蓝,等. 多点非一致激励下埋地管道多台阵振动台试验方案研究 [J].岩土力学, 2019, 40(06): 2127-2139+2153.
HAN Jun-yan, HOU Ben-wei, ZHONG Zi-lan, et al. Study on multi-array shaking table test scheme for buried pipelines under multi-point non-uniform excitation [J]. Rock and Soil Mechanics, 2019, 40(06): 2127-2139+2153.
[15] 高坛, 周传波,蒋楠,等. 基坑开挖爆破下邻近管道振动速度安全阈值研究[J].安全与环境学报, 2017, 17(06):2191–2195.
GAO Tan, ZHOU Chuan-bo, JIANG Nan, et al. Study on the safety threshold of adjacent pipeline vibration speed under foundation pit excavation blasting [J]. Journal of Safety and Environment, 2017, 17(06): 2191–2195.
[16] 张震,周传波,路世伟 等. 超浅埋地铁站通道爆破暗挖地表振动传播特征 [J]. 中南大学学报(自然科学版),2017, 48(08): 2119–2125.
ZHANG Zhen,ZHOU Chuanbo,LU Shi-wei, et al. Propagation characteristics of ground vibration induced by subsurface blasting excavation in an ultra–shallow buried underpass[J]. Journal of Central South University (Science and Technology), 2017, 48(08): 2119–2125.
[17] 朱斌,蒋楠,周传波,等. 基坑开挖爆破作用邻近压力燃气管道动力响应特性研究 [J]. 振动与冲击, 2020, 39(11): 209-216.
ZHU Bin, JIANG Nan, ZHOU Chuan-bo, et al. Effect of excavation blast vibration on adjacent buried gas pipeline in a foundation pit [J]. Journal of Vibration and Shock, 2020, 39(11): 209-216.
[18] 时党勇, 李裕春, 张胜民. 基于 ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 清华大学出版社, 2005:156−158.
Shi Dang-yong, Li Yu-chun, Zhang Sheng-min. Explicit dynamic analysis based on ANSYS/LS-DYNA 8.1 [M]. Tsinghua University Press, 2005: 156−15.
[19] 鲁稳,潘卫东. Drucker–Prager系列屈服准则在稳定分析中的应用研究 [J].汕头大学学报(自然科学版), 2014, 29(01):73–80.
Lu Wen, Pan Wei-dong. Application of Drucker-Prager series yield criterion in stability analysis [J]. Journal of Shantou University (Natural Science Edition), 2014, 29(01):73–80.
[20] 张玉琦,蒋楠,周传波,等. 地铁基坑爆破振动作用邻近高层框架建筑物结构动力响应[J]. 煤炭学报, 2019, 44(S1):118-125.
ZHANG Yu-qi, JIANG Nan, ZHOU Chuan-bo, et al. Study on dynamic response of building structures adjacent to high-rise frames caused by blasting vibration of subway foundation pit [J]. Journal of China Coal Society, 2019, 44(S1): 118-125.
[21] 单仁亮,宋立伟,白瑶,等.爆破作用下冻结岩壁损伤评价的模型试验研究[J]. 岩石力学与工程学报,2014, 033(010):1945-1952.
SHAN Ren-liang,SONG Li-wei,BAI Yao, et al. Model test studies of damage evaluation of frozen rock wall under blasting loads [J]. Chinese Journal of Rock Mechanics and Engineering,2014,033(010):1945-1952.
[22] 刘小鸣,陈士海.隧道掘进中掏槽孔爆破引起的地表振动波形预测 [J].岩土工程学报,2019, 41(09): 1731–1737.
Liu Xiao-ming, Chen Shi-hai. Prediction of surface vibration waveform caused by blasting in tunnel excavation [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(09): 1731–1737.
[23] 陈文化,崔杰,门福录.建筑物非均质地基的地震液化有效应力判别法 [J].水利学报, 2000,10(01): 36-42.
Chen Wen hua, Cui Jie, Men Fu. A method for the determination of effective seismic liquefaction stress in heterogeneous foundation of buildings [J]. Journal of Hydraulic Engineering, 2000,10(01): 36-42.
[24] 徐龙军,刘庆阳,谢礼立. 海底跨断层输气管道动力特性数值模拟与分析 [J]. 工程力学, 2015, 32(12): 107-115.
XU Long-jun, LIU Ying-yang, XIE Li-li. Numerical simulation and analysis for submarine pipeline systems crossing active strike-slip fault. Engineering Mechanics, 2015, 32(12):107-115.
[25] 郑爽英,杨立中. 下穿隧道爆破地震作用下埋地输气管道的动力响应规律研究 [J]. 爆破,  2015, 138(04): 73-80+113.
ZHENG Shuang-ying, YANG Li-zhong. Dynamic Response Law of Buried Gas Pipeline caused by Blasting Seismic Waves of Undercrossing Tunneling [J]. Blasting, 2015, 138 (04):73-80+113.
[26] 夏宇磬,蒋楠,周传波,等. 下穿地铁隧道爆破振动作用下给水管道动力响应特性研究 [J]. 爆破,2019, 36(01):10-17+41.
XIA Yu-zhen, JIANG Nan, ZHOU Chuan-bo, et al. Dynamic response characteristics of water supply pipeline under blasting vibration of underneath tunnel[J]. Blasting, 2019, 36(01):6–13+37.
[27] 黄强兵, 彭建兵.基于地震波入射角的地下管道地震应力计算 [J].地下空间与工程学报, 2008,04(05): 979–984.
HUANG Qiang-bing, PENG Jian-bing. Study on seismic stress calculation of underground pipeline based on incident angle of seismic wave [J]. Chinese Journal of Underground Space and Engineering, 2008,04(05): 979–984.
[28] 中华人民共和国国家标准编写组. GB—T13295—2019, 水及燃气管道用球墨铸铁管、管件和附件[S]. 北京:中国标准出版社,2019.
The National Standards Compilation Group of People's Republic of China. GB—T13295—2019, Ductile iron pipes, fittings and accessories for water and gas pipelines [S]. Beijing:China Planning Press, 2019.

PDF(1820 KB)

Accesses

Citation

Detail

段落导航
相关文章

/