基于单自由度参数激励模型的车辆随机振动分析

朱大鹏1,薛如壮1,曹兴潇2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 79-86.

PDF(1003 KB)
PDF(1003 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (2) : 79-86.
论文

基于单自由度参数激励模型的车辆随机振动分析

  • 朱大鹏1,薛如壮1,曹兴潇2
作者信息 +

Vehicle random vibration analysis using a SDOF parametric excitation model

  • ZHU Dapeng1,XUE Ruzhuang1,CAO Xingxiao2
Author information +
文章历史 +

摘要

包装件振动可靠性的分析和优化需要构建高效准确的车辆随机振动载荷分析模型。本文将车辆建模为单自由度参数激励系统,分析车辆在平稳载荷下的加速度响应。基于Mathieu方程分析车辆动态响应特性,结果表明,车辆响应中出现少量的大幅振动响应的原因是参数激励系统中随机过程β(t)的波动引起了系统的失稳。分别构建车辆在稳态、失稳和衰减条件下的响应分析方法,建立了车辆加速度响应的概率密度函数分析方法,构建了根据记录的实验数据识别系统参数的方法。分析结果表明,本文建立的车辆随机振动分析方法能够高效准确地再现车辆非平稳随机振动的时域特征及概率密度函数,为研究包装件振动可靠性提供了高效准确的分析基础。

Abstract

Analytical model for vehicle vibration with efficiency and accuracy is essential for package vibration reliability analysis and optimization. In this paper, vehicle was modeled as a single degree of freedom parametric excitation system, acceleration response of the vehicle excited by stationary loads was analyzed. The response characterization of the parametric system was approximated analytically by use of Mathieu’s equation, from the analysis, it can be observed that the fluctuation of stochastic process β(t) may give rise to the instability of vehicle response, which is the intrinsic reason to the rare large-altitude response of vehicle. The analysis methods for vehicle response under steady condition, instability condition and decay condition were proposed respectively, the parameter identification procedure for the parametric excitation system was also given. The simulation results indicated that one can simulate vehicle vibration accurately using the proposed parametric excitation model, which have good agreements with the experimental data in time domain manner and PDF manner. The model also provides an analytical basis for accurate and efficient research on package vibration reliability analysis.

关键词

包装件振动可靠性分析 / 参数激励模型 / Mathieu方程 / 系统参数识别

Key words

 package vibration reliability analysis / parametric excitation model / Mathieu’s equation / system parameters identification

引用本文

导出引用
朱大鹏1,薛如壮1,曹兴潇2. 基于单自由度参数激励模型的车辆随机振动分析[J]. 振动与冲击, 2022, 41(2): 79-86
ZHU Dapeng1,XUE Ruzhuang1,CAO Xingxiao2. Vehicle random vibration analysis using a SDOF parametric excitation model[J]. Journal of Vibration and Shock, 2022, 41(2): 79-86

参考文献

[1] Jiang J H, Wang Z W. Dropping damage boundary curves for cubic and hyperbolic tangent packaging systems based on key component[J]. Packaging Technology and Science, 2012, 25(7):397-411.
[2] Wang J , Duan F , Jiang J H , et al. Dropping damage evaluation for a hyperbolic tangent cushioning system with a critical component[J]. Journal of Vibration and Control, 2012, 18(10):1417-1421.
[3] Kitazawa H, Saito K, Ishikawa Y. Effect of difference in acceleration and velocity change on product damage due to repetitive shock[J]. Packaging Technology and Science, 2014, 27(3): 221-230.
[4] Shafie M M, Rajabipour A, Mobli H, et al. The effect of dropping impact on bruising pomegranate fruit[J]. Journal of Agricultural Machinery, 2016.
[5] 王军,王志伟. 半正弦脉冲激励下考虑易损件的正切型包装系统冲击特性研究[J]. 振动与冲击, 2008,27(1): 167-169.
WANG Jun, WANG Zhi-wei. 3-dimensional shock response spectra characterizing shock response of a tangent packaging system with critical components[J]. Journal of vibration and shock, 2008,27(1): 167-169.
[6] Zhou R, Yan L P, Li B G et.al. Measurement of truck transport vibration levels in China as a function of road conditions, truck speed and load level[J]. Packaging Technology and Science, 2015, 28(11):949-957.
[7] Zhong C, J. Li J, Kawaguchi K et. al. Measurement and analysis of shocks on small packages in the express shipping environment of China[J]. Packaging Technology and Science, 2016, 29(8-9):437-449.
[8]王丽丽, 赵冬菁, 仲晨. MapleSim在振动仿真中的应用[J]. 包装工程, 2018, 39(17):24-30.
WANG Li-li, ZHAO Dao Dong-jing, ZHONG Chen. Application of MapleSime in vibration simulation[J]. Packaging Engineering, 2018,39(17):24-30.
[9] 秦伟, 李光. 三自由度半正定系统随机振动仿真与试验研究[J]. 包装工程, 2020, v.41;No.421(07):143-149.
QIN Wei, LI Guang. Random vibration simulation and experimental study of three-degree-of-freedom semi-definite system[J]. Packaging Engineering, 2020,41(7):134-140.
[10] Lepine J, Rouillard V, Sek M. On the use of machine learning to detect shocks in road vehicle vibration signals[J]. Packaging Technology and Science, 2016, 30(8):387-398.
[11] Rouillard V, Sek M. Synthesizing non-stationary, non-Gaussian random vibrations[J]. Packaging Technology and Science, 2010, 23(8) :423-439.
[12] Rouillard V, Sek M. Creating transport vibration simulation profiles from vehicle and road characteristics[J]. Packaging Technology and Science, 2013, 26(2): 82-95.
[13] 蒋瑜, 陶俊勇,王得志 等. 一种新的非高斯随机振动数值模拟方法[J]. 振动与冲击, 2012, 31(19):169-173.
JIANG Y, TAO Jun-Yong, WANG De-Zhi et al. A novel approach for numerical simulation of a non-Gaussian random vibration[J]. Journal of vibration and shock, 2012, 31(19):169-173.
[14] 蒋瑜, 陈循, 陶俊勇等. 指定功率谱密度、偏斜度和峭度值下的非高斯随机过程数字模拟[J]. 系统仿真学报, 2006, 18(5):1127-1130.
JIANG Yu, CHEN Xu, TAO Jun-Yong. Numerically Simulating Non-gaussian Random Processes with Specified PSD,Skewness and Kurtosis[J]. Journal of System Simulation, 2006, 18(5):1127-1130.
[15] 朱大鹏. 非高斯随机振动下包装件时变振动可靠性分析[J]. 振动与冲击, 2020, 39(16): 96-102.
ZHU Dapeng. Time-dependent reliability analysis of package under non-Gaussian excitation. JOURNAL OF VIBRATION AND SHOCK, 2020, 39(16): 96-102.
[16] 杨喆, 朱大鹏, 高全福. 一种非高斯随机振动过程数值模拟方法[J]. 包装工程,2019,40(15):48-53.
YANG Zhe,ZHU Da-peng,GAO Quan-fu.A Numerical Simulation Method for Non-Gaussian Random Vibration Process[J]. Packaging Engineering, 2019, 40(15):48-53.
[17] Geroulas V , Mourelatos Z P , Tsianika V , et al. Reliability analysis of nonlinear vibratory systems under non-Gaussian loads[J]. Journal of Mechanical Design, 2017, 140(2):1-9.
[18] Vasiliki T , Vasileios G , Zissimos M , et al. A Methodology for Fatigue Life Estimation of Linear Vibratory Systems under Non-Gaussian Loads[J]. Sae International Journal of Commercial Vehicles, 2017, 10(2):2017-01-0197.
[19] Shields M D, Deodatis G , Bocchini P . A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic process by a translation process[J]. probabilistic engineering mechanics, 2011, 26(4):511-519.
[20] Yamazaki F, Shinozuka, M. Digital generation of non-Gaussian stochastic fields[J]. Journal of Engineering Mechanics, 1988, 114(7):1183-1197.
[21] Soong, T T, and Grigoriu, M. Random Vibration of Mechanical and Structural Systems[M]. Prentice Hall, Englewood Cliffs, NJ, 1993
[22] Nayfeh A H, Mook D T. Nonlinear oscillations[M]. Wiley-Interscience, New York, 1984.
[23] 周纪卿, 朱因远. 非线性振动[M]. 西安: 西安交通大学出版社, 2008.
ZHOU Ji-Qing, ZHU Yin-Yuan. Nonlinear vibration[M]. Xian: Xian Jiaotong University press, 2008.
[24] Butikov, Eugene I . Analytical expressions for stability regions in the Ince–Strutt diagram of Mathieu equation[J]. American Journal of Physics, 2018, 86(4):257-267.
[25] Floris C. Stochastic stability of damped mathieu oscillator parametrically excited by a Gaussian noise[J]. Mathematical Problems in Engineering, 2012(2012):1-18.
[26] 包戈留包夫, 米特罗波尔斯基. 非线性振动理论中的渐近方法[M]. 上海:上海科学技术出版社,1963.
Bogoliubov N N and Mitropolsky Y A. Asymptotic methods in the Theory of Nonlinear Oscillations[M]. Shanghai: Shanghai science and technology press, 1963.
[27] Mohamad M A, Sapsis T P. Probabilistic response and rare events in Mathieu’s equation under correlated parametric excitation[J]. Ocean Engineering, 2016, 120:289-297.
[28] Faravelli L. Stochastic modeling of the seismic excitation for structural dynamics purposes[J]. Probabilistic Engineering Mechanics. 1988,3(4):189-195.
[29] 朱大鹏. 非线性包装系统中关键部件振动可靠度分析[J]. 振动与冲击, 2019, 38(18):109-114.
ZHU Da-peng. Vibration reliability analysis for critical component of nonlinear package system[J] Journal of vibration and shock, 2019,38(18): 109-114.
[30] Mohamad, M A, Sapsis T P. Probabilistic Description of Extreme Events in Intermittently Unstable Dynamical Systems Excited by Correlated Stochastic Processes[J]. SIAM/ASA Journal on Uncertain Quantification, 2015,3(1), 709-736.
[31] Blake I F , Lindsey W C . Level Crossing Problems for Random Processes[J]. IEEE Transactions on Information Theory, 1973, 19(3):295-315.
[32] Kratz M F. Level crossings and other level functionals of stationary Gaussian processes[J] Probability Surveys, 2006,3:230-288.
[33] Rice, S. O . Distribution of the Duration of Fades in Radio Transmission: Gaussian Noise Model[J]. Bell System Technical Journal, 1958, 37(3):581-635.
[34] Kroese D P , Botev Z I . Spatial Process Generation[J]. Statistics, 2013:1-40.

PDF(1003 KB)

Accesses

Citation

Detail

段落导航
相关文章

/