大中跨度桥梁双向地震保护装置设计与试验研究

高昊1,杨俊2,王君杰3,颜海泉4

振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 112-118.

PDF(1590 KB)
PDF(1590 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 112-118.
论文

大中跨度桥梁双向地震保护装置设计与试验研究

  • 高昊1,杨俊2,王君杰3,颜海泉4
作者信息 +

Experimental study on bi-directional seismic protection device for large and medium span bridges

  • GAO Hao1,YANG Jun2,WANG Junjie3,YAN Haiquan4
Author information +
文章历史 +

摘要

对提出的双向地震保护装置的目标要求和与之对应的构造形式作出了阐释和剖析,在此基础上就各组件的设定逻辑关系和阈值确定原则进行了分析与探讨。通过组件分项试验和总装集成试验,联合检验了装置在慢速和快速等多工程场景下的力学行为;通过数值仿真技术手段,模拟了装置在真实地震过程中的力学行为。试验结果和数值模拟结果均表明,装置在满足日常使用和地震作用过程中的多种目标功能需求的前提下,具备可同时实现双向震动控制的技术优势。该装置对大中跨度桥梁减隔震设计的技术途径实现不失为一种有益的补充和扩展,对抗震应用具有实际意义。
关键词:双向;速度型;位移型;地震保护;分项试验;集成试验

Abstract

The target requirements and corresponding construction pattern of the new bi-directional seismic protection device are explained and interpreted, on this basis, the logic relation and threshold determination principle of each component are analyzed and discussed. The mechanical behavior of the device in multi-engineering scenarios such as slow speed and fast speed was tested jointly by the component test and assembly test. The mechanical behavior of the device in the process of real earthquake was simulated and verified by means of numerical simulation. The experimental results and numerical simulation results both show that the device can meet the requirements of multi-objective function in daily and seismic action with the advantage of bidirectional seismic vibration control. The device provides beneficial supplement and extension for the technical realization of seismic isolation design for large and medium span bridges, which has practical significance for seismic application.      
Key words: bi-directional; speed type; displacement type; seismic protection; item test; assembly test

关键词

双向 / 速度型 / 位移型 / 地震保护 / 分项试验 / 集成试验

Key words

bi-directional / speed type / displacement type / seismic protection / item test / assembly test

引用本文

导出引用
高昊1,杨俊2,王君杰3,颜海泉4. 大中跨度桥梁双向地震保护装置设计与试验研究[J]. 振动与冲击, 2022, 41(20): 112-118
GAO Hao1,YANG Jun2,WANG Junjie3,YAN Haiquan4. Experimental study on bi-directional seismic protection device for large and medium span bridges[J]. Journal of Vibration and Shock, 2022, 41(20): 112-118

参考文献

[1] 公路桥梁抗震设计规范:JTG/T 2231–01―2020 [S]. 北京:人民交通出版社, 2020.
[2] 城市桥梁抗震设计规范: CJJ 166—2011[S].北京:中国建筑工业出版社, 2011.
[3] 城市轨道交通结构抗震设计规范:GB 50909—2014[S]. 北京:中国计划出版社,2014.
[4] Guide specifications for seismic isolation design: AASHTO GSID—2014 [S]. Washington D.C.: American Association of State Highway and Transportation Officials (AASHTO), 2010.
[5] 道路桥示方书–同解说V耐震设计编[S]. ??日本道路协会, 2012.
[6] 沈星, 倪晓博, 叶爱君. 桥梁新型横向金属阻尼器研究[J]. 振动与冲击, 2014, 33(21): 96-101.
SHEN Xing, NI Xiaobo, YE Aijun. A new type of metallic damper for bridges’aseismic performance in transverse direction[J]. Journal of Vibration and Shock, 2014, 33(21): 96-101.
[7] 高昊, 连续梁桥多目标减隔震装置及其抗震性能研究[D]. 上海: 同济大学土木工程学院, 2021.
[8] TYLER R G. Tapered steel energy dissipators for earthquake resistant structures[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1978, 11(4): 282-294.
[9] GAO H, WANG J. Research on differences between cylindrical and e-shaped dampers for the bidirectional seismic control[J]. Journal of Bridge Engineering, 2020, 25(4): 04020008.
[10] 彭天波, 李建中. 带有速度锁定装置的双球面减隔震支座: CN101709568A [P].2010-05-19.
[11] 王祯, 苏伟, 孙大斌, 等. 速度锁定悬臂棒减隔震支座: CN205917589U [P]. 2017-02-01.
[12] 王君杰, 高昊, 杨俊, 等. 一种用于双向震动控制的大伸缩组合装置: CN214401384U [P]. 2021-10-16.
[13] 夏修身, 崔靓波, 李建中. Lock-up装置的作用机理与分析模型[J]. 哈尔滨工程大学学报, 2014, 35 (12): 1497-1502.
XIA Xiushen, CUI Liangbo, LI Jianzhong. Mechanism and analysis model for a lock-up device[J]. Journal of Harbin Engineering University, 2014, 35 (12): 1497-1502.
[14] 郑晓龙, 樊启武, 金怡新, 等. 速度锁定支座的设计与减震性能分析[J]. 铁道工程学报, 2015, 32 (10): 73-78.
ZHENG Xiaolong, FAN Qiwu, JIN Yixin, et al. Analysis of design and seismic isolation performance of luck-up bearing[J]. Journal of Railway Engineering Society, 2015, 32 (10): 73-78.
[15] 张永亮, 陈兴冲, 颜志华. Lock-up装置在连续梁桥上的减震性能研究[J]. 世界地震工程, 2010, 26 (2): 48-52.
ZHANG Yongliang, CHEN Xingchong, YAN Zhihua. Research on seismic reduction performance of lock-up device applied to continuous girder bridge[J]. World Earthquake Engineering, 2010, 26 (2): 48-52.
[16] BROWN D S. Bridge strengthening with shock transmission units[C]// 11th World Conference on Earthquake Enguneering. Acapulco:WCEE, 1996.
[17] PATEL D J. Value of shock transmission units for Mumbai Bridge[J].Proceedings of the Institution of Civil Engineers-Bridge Engineering,2004, 157(4):203-212.
[18] 王磊, 刘寒冰, 吴斌暄, 等. 新型地震结构保护系统的大跨径桥梁抗震分析[J]. 哈尔滨工业大学学报, 2004,36 (12): 1665-1667.
WANG lei, LIU Hanbing, WU Binxuan, et al. Seismic response analysis for long span bridge with new earthquake protective system[J]. Journal of Harbin Institute of Technology, 2004, 36 (12): 1665-1667.
[19] 桥梁用黏滞流体阻尼器:JT/T926—2014 [S]. 北京:人民交通出版社, 2014.
[20] 庄军生. 桥梁减震、隔震支座和装置[M]. 北京:中国铁道出版社, 2012.
[21] 公路桥梁弹塑性钢减震支座:JT/T843—2012 [S]. 北京:人民交通出版社, 2012.
[22] 沈星, 倪晓博, 叶爱君. 大跨度斜拉桥边墩新型横向钢阻尼器减震体系及设计方法[J]. 土木工程学报, 2016, 49 (5): 110-119.
SHEN Xing, NI Xiaobo, YE Aijun. Seismic system and design method of transverse metallic yielding dampers on long-span cable-stayed bridge side piers[J]. China Civil Engineering Journal, 2016, 49 (5): 110-119.
[23] 李立峰, 尹会娜, 唐嘉豪,等. 大跨径斜拉桥横向合理抗震体系研究[J]. 振动与冲击, 2022, 41(6): 153-159.
LI Lifeng, YIN Huina, TANG Jiahao, et al. Reasonable lateral seismic system of a long-span cable stayed bridge[J]. Journal of Vibration and Shock, 2022, 41(6): 153-159.
[24] 葛俊颖. 桥梁工程软件Midas Civil使用指南[M]. 北京: 人民交通出版社, 2013.

PDF(1590 KB)

Accesses

Citation

Detail

段落导航
相关文章

/