地铁线路小曲线段众多,造成了地铁车辆车轮磨耗严重。当一系转臂定位节点采用考虑频变特性的变刚度转臂定位节点时,可以有效提高车辆的曲线通过性能和稳定性。首先,建立基于变刚度转臂定位节点的地铁车辆动力学模型,并分析其相关频变特性。然后,通过采用Kriging surrogate model– particle swarm optimization (KSM–PSO)算法对于变刚度转臂定位节点参数进行优化,其中以车轮磨耗和车体横向平稳性为优化目标,进一步优化出适合地铁车辆的变刚度模型节点参数。结果表明:采用优化后的参数其临界速度为211.8 km/h,相对于定刚度模型临界速度增大4.1%,优化后节点参数进一步降低了脱轨系数和轮轴横向力。最后,分析优化后参数对于小曲线段车轮磨耗的影响,曲线外侧车轮磨耗减小31.4%,曲线内侧车轮磨耗较优化前减小22.4%。因此,优化后动刚度转臂节点参数能够提升地铁车辆曲线通过性能并减小车轮小曲线上的磨耗。
关键词:地铁车辆;动刚度;转臂节点;KSM–PSO算法;参数优化
Abstract
As many small radius curved track of the metro lines, which cause serious wheel wear of metro vehicles. When the positioning nodal point of the rotary arm with variable stiffness which considering the frequency variation characteristics are used, the curve passing performance and stability of the vehicle can be effectively improved. In this paper, the dynamics model of the metro vehicle based on positioning nodal point of the rotary arm with the variable stiffness is firstly established, and the related frequency variation characteristics are analyzed. Then the Kriging surrogate model– particle swarm optimization (KSM–PSO) algorithm is used to optimize the parameters of the positioning nodal point of the rotary arm with variable stiffness, the wheel wear index and the lateral ride index of the vehicle carbody are used as the optimization indexes to further optimize the parameters of the variable stiffness model for the metro vehicle. The results show that the critical speed of the optimized parameter is 211.8 km/h, which increases by 4.1% compared with the constant stiffness model, furthermore, the optimized parameters reduce the derailment coefficient and the lateral axle force of the wheelset. Finally, the effect of the optimized parameters on the wheel wear in the small radius curved track was analyzed, and the wheel wear on the outside of the curved track was reduced by 31.4%, and the wheel wear on the inner side of the curved track was reduced by 22.4% compared with the origin parameter. Therefore, the optimized dynamic stiffness of positioning nodal point of rotary arm with variable stiffness can improve the vehicle dynamics performance and reduce wheel wear of the small radius curved track.
Keywords: metro vehicle; variable stiffness; positioning nodal point of rotary arm; Kriging surrogate model– particle swarm optimization (KSM–PSO)algorithm; parameters optimization
关键词
地铁车辆;动刚度;转臂节点;KSM&ndash /
PSO算法;参数优化
{{custom_keyword}} /
Key words
metro vehicle /
variable stiffness /
positioning nodal point of rotary arm /
Kriging surrogate model&ndash /
particle swarm optimization (KSM–PSO)algorithm /
parameters optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李霞, 温泽峰, 金学松. 地铁车轮踏面异常磨耗原因分析[J]. 机械工程学报,2010,46(16): 60-66.
LI Xia, WEN Zefeng, JIN Xuesong. Analysis of abnormal wear on metro wheel tread[J]. Journal of Mechanical Engineering,2010, 46(16): 60-66.
[2] 丁军君, 黄运华, 李芾. 地铁车辆车轮磨耗仿真研究[J]. 城市轨道交通研究, 2013, 16(10): 73-77.
DING Junjun, HUANG Yunhua, LI Fu. Simulation and study of metro vehicle wheel wear[J]. Urban rail Transit Vehicles, 2013,16(10): 73-77.
[3] 何灼馀. 高速动车组转向架–系橡胶节点频率–刚度特性及其影响研究[D]. 成都:西南交通大学,2012.
[4] 张隶新, 魏来, 王勇. 变刚度转臂定位节点对车辆动力学性能的影响[J]. 铁道车辆, 2016. 54(12): 1-4.
ZHANG Lixin, WEI Lai, WANG Yong. Effect of the positioning nodal point of rotary arm with variable stiffness on the dynamics performance of vehicles[J]. Railway Vehicle,2016, 54(12): 1-4.
[5] 祁亚运, 戴焕云, 魏来, 等. 变刚度转臂定位节点对地铁车辆车轮磨耗的影响[J]. 振动与冲击, 2019, 38(6): 100-107.
QI Yayun, DAI Huanyun, WEI Lai, et al. Influence of changing the rigid arm positioning node on the wheel wear of metro vehicles[J]. Journal of Vibration and Shock, 2019, 38(6): 100-107.
[6] MOUSAVI BIDELEH S M, BERBYUK V E. Application of semi-active control strategies in bogie primary suspension system[C]//The Second International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire: Civil-Comp Press,2014.
[7] MOUSAVI BIDELEH S M, MEI T X, BERBYUK V E .Robust control and actuator dynamics compensation for railway vehicles[J]. Vehicle System Dynamics,2016, 54(12): 1762-1784.
[8] NEJLAOUI M, HOUIDI A, AFFI Z, et al. Multiobjective robust design optimization of rail vehicle moving in short radius curved tracks based on the safety and comfort criteria[J]. Simulation Modelling Practice and Theory, 2013, 30: 21-34.
[9] JOHNSSON A, BERBYUK V, ENELUND M. Pareto optimisation of railway bogie suspension damping to enhance safety and comfort[J]. Vehicle System Dynamics, 2012, 50(9): 1379-1407.
[10] MOUSAVI BIDELEH S M, BERBYUK V E, PERSSON R. Wear/comfort Pareto optimisation of bogie suspension[J]. Vehicle System Dynamics, 2016, 54(8): 1053-1076.
[11] HE Y, MCPHEE J. Optimization of curving performance of rail vehicles[J]. Vehicle System Dynamics,2005, 43(12): 895-923.
[12] HE Y, MCPHEE J. Multidisciplinary optimization of multibody systems with application to the design of rail vehicles[J]. Multibody System Dynamics, 2005, 14: 111-135.
[13] GONG D, LIU G Y, ZHOU J S. Research on mechanism and control methods of carbody chattering of an electric multiple-unit train[J]. Multibody System Dynamics, 2021,53(2):1-38.
[14] 解欢, 杨岳, 童林军, 等. 基于混合代理模型的高速轨道车辆悬挂参数多目标优化[J]. 铁道科学与工学报, 2016, 13(10): 2056-2063.
XIE Huan, YANG Yue, TONG Linjun, et al. Multi-objective optimization of the suspension parameters for high speed rail vehicle based on a hybrid surrogate model[J].Journal of Railway Science and Engineering, 2016, 13(10): 2056-2063.
[15] 廖英英, 刘永强, 杨绍普. 高速铁道车辆悬挂系统参数化建模、优化与仿真分析[J]. 动力学与控制学报, 2013, 11(3): 257-263.
LIAO Yingying, LIU Yongqiang, YANG Shaopu. Parameterized optimizing and simulation of suspension system for high-speed railway vehicle[J]. Journal of Dynamics and Control, 2013, 11(3): 257-263.
[16] 王蔚, 吴兴文, 周橙, 等. 基于小生境遗传算法的高速动车组稳定性优化与灵敏度分析[J]. 铁道学报,2021, 43(7): 26-33.
WANG Wei,WU Xingwen,ZHOU Cheng, et al. Investigation on stability optimization and parameter sensitivity analysis of high-speed train using niche genetic algorithm [J]. Journal of the China Railway,2021, 43(7): 26-33.
[17] HERTZ H. On the contact of elastic solids[J]. Journal für die Reine und Angewandte Mathematik, 1882 (92):156-171.
[18] KALKER J J.A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982,11 (1) :1–13.
[19] 机车车辆动力学性能评定及试验鉴定规范:GB/T 5599—2019 [S].??
[20] ARCHARD J F. Contact and rubbing of flat surfaces[J].
Journal of Applied Physics, 1953, 24(8): 981−988.
[21] JENDEL T. Prediction of wheel profile wear-comparison with field measurement[J].Wear,2002, 253:89-99.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}