为了对在役混凝土梁桥在未来服役期的承载力失效概率进行评估,本文首先基于实测随机车流数据,采用蒙特卡罗随机抽样的方法建立随机车流荷载模型;然后基于经典Rice公式,建立桥梁车致荷载效应极值的概率分布模型;最后,考虑桥梁抗力的逐年退化,基于结构可靠度理论,详细给出了在役混凝土梁桥在未来服役时间内的可靠度评估方法及步骤。实际工程的应用结果表明:(1)经典Rice公式对桥梁车致弯矩界限跨阈率的拟合效果很好,依此建立的桥梁车致弯矩极值概率分布模型有效可靠;本文给出的在役混凝土梁桥可靠度评估方法在实际工程中应用方便,可获取在役混凝土梁桥在未来服役期的承载力失效概率、承载力达到目标可靠指标的时间节点及桥梁可靠性能冗余度。(2)中小跨径混凝土梁桥在随机车流荷载作用下的弯矩界限跨阈率取决于过桥车辆数量,而受车辆间距的影响较小。(3)随着桥梁服役时间的增加,桥梁车致荷载效应极值的均值增大,标准差逐渐减小;桥梁抗力的均值和标准差随着桥梁服役时间的增加而逐渐减小。(4)混凝土梁桥中直接承受车辆荷载作用的主梁,其承载力失效概率大于非直接承受车辆荷载作用的主梁,其中边梁承载力失效概率最大。(5)混凝土梁桥的承载力失效概率随着抗力退化速度的增大而增大,抗力低速退化的承载力失效概率是抗力不退化承载力失效概率的4.88倍。(6)为保证在役混凝土梁桥的运营安全,建造时应该提高边梁的安全储备,管养时针对重型货车出现频率较高或恶劣使用环境的桥梁,可以因地制宜的采取相应的政策进行干预。
关键词:可靠度评估;经典Rice公式;随机车流;可靠指标;抗力退化
Abstract
In order to evaluate the bearing capacity failure probability of existing concrete beam bridge in the future service period. Firstly, this paper firstly established the random traffic load model based on the measured random traffic data by using Monte Carlo random sampling method. Then, based on the classical rice formula, the probability distribution model of the extreme value of vehicular load effect was established. Finally, considering the degradation of bridge resistance year by year, based on the structural reliability theory, the reliability evaluation method and steps of in-service concrete beam bridge in the future service time were given in detail. The application results of practical engineering show that: (1) The classical Rice formula has a good fitting effect on the threshold crossing rate of the bridge vehicular moment, and the extreme probability distribution model of the bridge vehicular moment is effective and reliable. The reliability evaluation method of in-service concrete girder bridge presented in this paper is easy to be applied in practical engineering. It can obtain the failure probability of the bearing capacity of the in-service concrete beam bridge in the future service period, the time node when the bearing capacity reaches the target reliability index and the redundancy of the reliability performance of the bridge. (2) The threshold crossing rate of moment limit of small and medium-span concrete beam bridge under random traffic flow load depends on the number of vehicles passing the bridge, but is less affected by vehicle spacing. (3) With the increase of bridge service time, the mean value of extreme value of vehicular load effect of bridge increases, and the standard deviation decreases gradually; The mean value and standard deviation of bridge resistance decrease with the increase of bridge service time. (4) In a concrete beam bridge, the failure probability of the bearing capacity of the main beam that directly bears the vehicle load is greater than that of the main beam that does not directly bear the vehicle load, and the failure probability of the bearing capacity of the side beam is the highest. (5) The failure probability of bearing capacity of concrete beam bridge increases with the increase of resistance degradation speed. The failure probability of bearing capacity with low-speed degradation is 4.88 times that of non-degradation. (6) In order to ensure the operation safety of concrete beam bridges in service, the safety reserve of side beams should be improved during construction. For bridge with high frequency of heavy trucks or harsh service environment, corresponding policies can be taken to intervene according to local conditions.
Key words: reliability assessment;classical Rice formula;random traffic flow;reliability index;resistance degradation
关键词
可靠度评估 /
经典Rice公式 /
随机车流 /
可靠指标 /
抗力退化
{{custom_keyword}} /
Key words
reliability assessment /
classical Rice formula /
random traffic flow /
reliability index /
resistance degradation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 马建,冯镇,邱军领,等. 改革开放40 年中国公路交
通行业技术变迁及启示[J].长安大学学报(社会科学版),
2018,20(6):38-67.
Ma Jian,Feng Zhen,Qiu Jun-ling,et al. Transformations and inspirations of technology in chinese road transportation industry over the past 40 years of reform and opening up[J]. Journal of Chang'an University( Social Science Edition), 2018,20(6):38-67.
[2] 袁阳光,黄平明,韩万水,等.基于可靠度理论的中小跨
径桥梁卡车载重限值研究[J].工程力学,2017,34(8):161-170.
YUAN Yang-guang,HUANG Ping-ming,HAN Wan-shui,et al. Reliability based research on truck-load limitation of medium-small-span bridge[J].Engineering Mechanics,2017,34(8):161-170.
[3] FU Z Q,JI B H,CHENG M,et al.Statistical analysis of the causes of bridge collapse in China[C]//Proceedings of Forensic Engineering:Gateway to a safer tomorrow.Reston:ASCE,2012,75-83.
[4] Strauss A,Hoffmann S,Mendner R,et al.Structural assessment and reliability analysis for existing engineering structures,applications for real structures[J]. Structural and Infrastructure Engineering,2009,5(4):277-286.
[5] 邓 露,王涛,何钰龙,等.车辆轴限对钢筋混凝土桥梁可靠度和加固费用的影响[J].中国公路学报,2020,33(5):92-100.
DENG Lu,WANG Tao,HE Yu-long,et al. Impact of vehicle axle load limit on reliability and strengthening cost of reinforced concrete bridges[J]. China Journal of Highway and Transport,2020, 33(5):92-100.
[6] 孙晓燕,潘宏,王海龙,等.大气环境下服役公路梁桥结构时变可靠度分析[J].浙江大学学报(工学版),2012,46(4):643-649.
SUN Xiao-yan,PAN Hong,WANG Hai-long,et al.Impact of vehicle axle load limit on reliability and strengthening cost of reinforced concrete bridges[J].Journal of Zhejiang University(Engineering Science) ,2012,46(4):643-649.
[7] 金浩,梁慧超,梁栋,等.钢筋混凝土简T梁桥加固后的体系时变可靠度[J].天津大学学报,2012,45(8):723-728.
JIN Hao,LIANG Hui-chao,LIANG Dong,et al.Time-varying reliability analysis of the whole reinforced simple T-bridge[J].Journal of Tiajin University,2012,45(8):723-728.
[8] 彭建新,胡守旺,张建仁.考虑空间变量的氯盐环境下RC简支梁桥失效概率分析[J].土木工程学报,2014,47(12):115-121.
PENG Jian-xin,HU Shou-wang,ZHANG Jian-ren.Analysis on failure probabilities of RC simply-supported beam under Chloride environment with spatial variables considered [J].China Civil Engineering Journal,2014,47(12):115-121.
[9] 杨慧,何浩祥,闫维明.考虑碳化和氯离子累积效应的梁桥时变可靠度[J].哈尔滨工业大学学报,2019,51(6):71-78.
YANG Hui,HE Hao-xiang,YAN Wei-ming.Time-dependent reliability analysis on reinforced concrete beam bridge considering carbonization and chloride accumulation effect[J].Journal of Harbin Institute of Technology, 2019,51(6):71-78.
[10] 吴瑾,吴胜兴.锈蚀钢筋混凝土结构可靠度评估[J].工程力学,2005,22(1):118-122.
WU Jin,WU Sheng-xing.Reliability assessment of concrete structures with corroded reinforcement[J].Engineering Mechanics, 2005,22(1):118-122.
[11] 索清辉,钱永久. 服役公路桥梁的时变可靠指标计算[J].交通运输工程学报,2006,6(1):69-71.
SUO Qing-hui,QIAN Yong-jiu. Time-dependent reliability index calculation of existed highway bridge[J].Chinese Journal of Transportation Engineering, 2006,6(1):69-71.
[12] 黄平明,袁阳光,赵建峰,等.重载交通下空心板桥梁承载能力安全性[J].交通运输工程学报,2017,17(03):1-12.
HUANG Ping-ming,YUAN Yang-guang,ZHAO Jian-feng,et al.Bearing capacity safety of hollow slab bridge under heavy traffic load[J].Journal of Traffic and Transportation Engineering, 2017,17(03):1-12.
[13] 袁伟璋,黄海云,张俊平,等. 基于实际运营车辆荷载效应的既有桥梁可靠度研究[J].振动与冲击,2019,38(6):239-244.
YUAN Wei-zhang,HUANG Hai-yun,ZHANG Jun-ping,et al. Study on the reliability of an existing bridge based on the actual operating vehicle load effect[J]. Journal of Vibration and Shock, 2019,38(6):239-244.
[14] 罗媛,颜东煌,袁明. 随机车辆冲击作用下简支梁桥疲劳可靠度评估[J].计算力学学报,2018,35(4):417-423.
LUO Yuan,YAN Dong-huang,YUAN Ming. Fatigue reliability assessment of simply supported bridges subject to impact of stochastic vehicle loads[J].Chinese Journal of Computational Mechanics, 2018,35(4):417-423.
[15] 袁阳光,韩万水,谢青,等.非平稳车载及抗力劣化进程下混凝土桥梁时变可靠性评估[J].中国公路学报,2020,33(03):85-96.
YUAN Yang-guang,HAN Wan-shui,XIE Qing,et al.Time-dependent reliability assessment of concrete bridges considering non-stationary vehicle load and resistance deterioration processes[J]. China Journal of Highway and Transport, 2020,33(03):85-96.
[16] 袁阳光,韩万水,李光玲,等.考虑非平稳因素的混凝土桥梁概率极限状态评估[J].工程力学,2020,37(08):167-178.
YUAN Yang-guang,HAN Wan-shui,LI Guang-ling,et al.Probabilistic limit state assessment of concrete bridges considering non-stationary factors[J].Engineering Mechanics, 2020,37(08):167-178.
[17] BAILEY S F,Rolf B.Site specific probability distribution of extreme traffic action effects[J]. Probabilistic Engineering Mechanics,1999,14: 19-26.
[18] 鲁乃唯,刘扬,邓扬.随机车流作用下悬索桥钢桥面板疲劳损伤与寿命评估[J].中南大学学报(自然科学版),2015, 46(11): 4300-4306.
LU Nai-wei,LIU Yang,DENG Yang.Fatigue damage and life assessment for steel decks of suspension bridge under stochastic traffic flow[J].Journal of Central South University (Science and Technology),2015,46(11): 4300-4306.
[19] CHEN W Z,CHENG M,XIE Z L,et al. Improvement of extrapolation of traffic load effect on highway bridges based on Rice’s theory[J].International Journal of Steel Structures,2015, 15(3): 527-539.
[20] OBRIEN E J,CAPRANI C C.Headway modelling for traffic load assessment of short to medium span bridges[J]. The Structural Engineer, 2005,83 (16): 33-36.
[21] Leahy C,Obrien E,O’Connor A. The effect of traffic growth on characteristic bridge load effects[J].Transportation Research Procedia, 2016, 14: 3990-3999.
[22] Cremona C.Optimal extrapolation of traffic load effects [J]. Structural Safety, 2001, 23(1): 31-46.
[23] 李扬海,鲍卫刚,郭修武,等. 公路桥梁结构可靠度与概率极限状态设计[M].北京:人民交通出版社,1997.
LI Yang-hai,BAO Wei-gang,GUO Xiu-wu,et al. Reliability and probability limit state design of highway bridge structure[M].Beijing: China Communications Press,1997.
[24] LI Q W,WANG C,Ellingwood B R.Time-dependent reliability of aging structures in the presence of non-stationary loads and degradation[J].Structural Safety.2015,52:132-141.
[25] ENRIGHT M P,FRANGOPOL D M. Service-life prediction of deteriorating concrete bridges[J].Journal of Structural Engineering.1998,124:309-317.
[26] 张喜刚.公路桥梁汽车荷载标准研究[M].北京:人民交通出版社,2014.
ZHANG Xi-gang. GONGLU QIAOLIANG QICHE HEZAI BIAOZHUN YANJIU[M].Beijing: China Communications Press,2014.
[27] 刘扬,张海萍,鲁乃唯,等.基于WIM的随机车流建模和简支梁桥荷载效应研究[J].桥梁建设,2015,45(5):13-18.
LIU Yang,ZHANG Hai-ping,LU Nai-wei,et al.Study of random vehicle flow modeling and load effect of simply-supported beam bridge based on WIM data[J].Bridge construction, 2015,45(5):13-18.
[28] 中华人民共和国交通运输部.JTG 2120-2020,公路工程结构可靠性设计统一标准[S].北京:人民交通出版社,2020.
Ministry of Transport of the People’s Republic of China.JTG 2120-2020,Unified standard for reliability design of highway engineering structures[S].Beijing:China Communications Press,2020.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}