跑道不平整激励下飞机滑跑动载分析

钱劲松1,2,潘祥伟1,2,岑业波1,2,刘东亮1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 176-184.

PDF(2898 KB)
PDF(2898 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 176-184.
论文

跑道不平整激励下飞机滑跑动载分析

  • 钱劲松1,2,潘祥伟1,2,岑业波1,2,刘东亮1,2
作者信息 +

Aircraft taxiing dynamic load induced by runway roughness

  • QIAN Jinsong1,2,PAN Xiangwei1,2,CEN Yebo1,2,LIU Dongliang1,2
Author information +
文章历史 +

摘要

为探究跑道不平整状态和滑跑速度对飞机滑跑动载的影响规律,利用ADAMS/Aircraft软件建立了B737-800的虚拟样机模型,采用功率谱密度重构跑道不平整,进行了飞机多工况匀速滑跑仿真,并根据道面不平整方差与功率谱密度间的关系推导了最大动载系数预估方程。结果表明,不平整指数C和频率指数w的增大,均会引起动载系数变异性和最大动载系数的增大;最大动载系数随不平整指数C的增长速度逐步减小,而随频率指数w的增长速度呈现逐步增大的趋势;受升力和不平整激励的共同作用,最大动载系数随滑跑速度增加先增大后减小,出现极值和相应的敏感速度;敏感速度随着C和w的增大而增大,受w的影响更为显著;建立的飞机滑跑最大动载系数预估方程与仿真数据相关性很好(R2>0.93),大部分实测机场跑道(C=0~0.4,w=2.0~2.6)的敏感速度最高为150.4km•h-1,最大动载系数可达1.163。
关键词:跑道平整度,功率谱密度,虚拟样机,动载系数

Abstract

In order to explore the effect of runway roughness and taxiing speeds on dynamic loads, this paper used ADAMS/Aircraft software to establish a virtual prototype model of B737-800, reconstructed runway profiles by power spectral density method and simulated multiple conditions with constant speed. Finally, a prediction equation of the maximum dynamic load coefficient was developed based on the relationship between the variance of runway roughness and the corresponding power spectral density. The results show that the increase of unevenness index (C) and waviness (w) increases the maximum dynamic load coefficient and the variability of dynamic load coefficient. Once the unevenness index (C) increases to a certain level, the maximum dynamic load coefficient tends to be flat out, while the maximum dynamic load coefficient increases faster with the increase of waviness (w). With the combined effects of runway roughness and lift force, the maximum dynamic load coefficient first increases and then decreases, resulting in an extremum and a corresponding sensitive velocity. The sensitive velocity increases with the increase of the unevenness index (C) and waviness (w), and the effect of waviness (w) is more significant. The proposed prediction equation has a good correlation with the simulation results (R2>0.93), and for most of the measured runways (C=0~0.4,w=2.0~2.6), the sensitive velocity is up to 150.4km•h-1 and the maximum dynamic load coefficient is 1.163.
Key words: runway roughness, power spectral density, virtual prototype, dynamic load coefficient

关键词

跑道平整度
/ 功率谱密度 / 虚拟样机 / 动载系数

引用本文

导出引用
钱劲松1,2,潘祥伟1,2,岑业波1,2,刘东亮1,2. 跑道不平整激励下飞机滑跑动载分析[J]. 振动与冲击, 2022, 41(20): 176-184
QIAN Jinsong1,2,PAN Xiangwei1,2,CEN Yebo1,2,LIU Dongliang1,2. Aircraft taxiing dynamic load induced by runway roughness[J]. Journal of Vibration and Shock, 2022, 41(20): 176-184

参考文献

1 LEDBETTER R H. Pavement response to aircraft dynamic loads, Vol Ⅲ[R[. U.S. Army Engineer Waterways Experiment Station, Soils and Pavement Laboratory, 1976.
2 许金余, 吴彰春, 冷培义等. 机场道面的动力荷载及动力相互作用有限元分析[C]//中国土木工程学会第七届土力学及基础工程学术会议论文集, 1994.
XU Jinyu, WU Zhangchun, LENG Peiyi, et al. Finite element analysis of dynamic load and dynamic interaction on airfield pavement[C]. Proceedings of the 7th Chinese Society of Soil Mechanics and Foundation Engineering Academic Conference, 1994.
3 董倩, 王建华, 张献民. 飞机-跑道耦合作用下刚性跑道振动响应研究[J]. 振动与冲击, 2021, 40(13): 64-72.
DONG Qian, WANG Jianhua, ZHANG Xianmin. Vibration response of rigid runway under aircraft-runway coupling[J]. Journal of Vibration and Shock, 2021, 40(13): 64-72.
4 程国勇, 侯栋文, 黄旭栋. 基于飞机竖向加速度的道面不平度限值标准研究[J]. 振动与冲击, 2017, 36(09): 166-171.
CHENG Guoyong, HOU dongwen, HUANG Xudong. Pavement roughness limit value standard based on aircraft vertical acceleration[J]. Journal of Vibration and Shock, 2017,36(09):199-171.
5 LIANG L, GU QK, LIANG Z, et al. Simulation analysis of aircraft taxiing dynamic load on random road roughness[J]. Procedia Engineering, 2011, 12: 163–169.
6 DU Z M, LING J M, ZHAO H D. Numerical expression of dynamic load generated by aircraft at varying IRI and velocities[C]//2015 Meeting of the Transportation Research Board. Washington DC: Transportation Research Board, 2015.
7 吕耀志, 董倩, 胡春飞等. 跑道动荷载与国际平整度指数关系研究[J]. 中外公路, 2013, 3:74-77.
LV Yaozhi, DONG Qian, HU Chunfei, et al. Study on the relationship between dynamic load of runway and international roughness index[J]. Journal of China & Foreign Highway. 2013, 3:74-77.
8 SUN L, DENG X J. Predicting vertical dynamic loads caused by Vehicle-Pavement interaction[J]. Journal of Transportation Engineering, 1998, 124(5): 470-470.
9 SUN L, ZHANG Z M, RUTH J. Modeling indirect statistics of surface roughness[J]. Journal of Transportation Engineering, 2001, 127(2): 105-111.
10 黄立葵, 盛灿花. 车辆动荷系数与路面平整度的关系[J]. 公路交通科技, 2006, 23(3): 27-30.
HUANG Likui, SHENG Canhua. Relationship between vehicle dynamic amplification factor and pavement roughness[J]. Journal of Highway and Transportation Research and Development, 2006, 23(3): 27-30.
11 朱立国, 陈俊君, 袁捷等. 基于虚拟样机的飞机滑跑荷载[J].同济大学学报(自然科学版), 2016,44(12):1873-1879+1888.
ZHU Liguo, CHEN Junjun, YUAN Jie, et al. Taxiing load analysis of aircrafts based on virtual prototype[J]. Journal of Tongji University (Nature Science), 2016, 44(12): 1873-1879+1888.
12 Sayers M W, Gillespie T D, Queiroz C A V. The international road roughness experiment: establishing correlation and calibration standard for measurements[R]. Washington DC: World Bank, 1986.
13 凌建明, 刘诗福, 袁捷等. 采用IRI评价机场道面平整度的适用性. 交通运输工程学报[J], 2017, 17(1): 20-27.
LING Jianming, LIU Shifu, YUAN Jie, et al. Applicability of IRI based evaluation of airport pavement roughness[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 20-27.
14 Loprencipe G, Zoccaliz P. Comparison of methods for evaluating airport pavement roughness[J]. International Journal of Pavement Engineering, 2019, 20(7): 782-791.
15 Kirk C L. Analysis of taxing included vibrations in aircraft by the power spectral density method[R]. Washington DC: Cranfield Institute of Technology, 1973.
16 Kropáč O, Múčka P. Effects of longitudinal road roughness on vehicle vibration response[J]. Vehicle System Dynamics, 2009, 47: 135-153.
17 Múčka P. Road roughness limit values based on measured vehicle vibration[J]. Journal of Infrastructure Systems, 2017, 23(2): 04016029.
18 Múčka P. Proposal of road unevenness classification based on road elevation spectrum parameters[J]. Journal of Testing and Evaluation, 2016, 44(2): 930–944.
19 凌建明, 刘诗福, 李萌等. 波音平整度评价方法的局限性分析[J]. 同济大学学报(自然科学版), 2018, 46(08): 1035-1041.
LING Jianming, LIU Shifu, LI Meng, et al. Application limitation of Boeing bump to evaluation runway roughness[J]. Journal of Tongji University (Nature Science), 2018, 46(08): 1035-1041.
20 QIAN J S, CEN Y B, PAN X W, et al. Spectrum parameters for runway roughness based on statistical and vibration analysis[J]. International Journal of Pavement Engineering, 2021: 1-13.
https://doi.org/10.1080/10298436.2021.1916821
21 LIU S F, LING JM, TIAN Y, et al. Assessment of aircraft landing gear cumulative stroke to develop a new runway roughness evaluation index[J]. International Journal of Pavement Engineering, 2021: 1-12.
22 The Boeing Company. Airplane characteristics for airport planning (B737-700/800/900)[S]. Seattle: Boeing Commercial Airplanes, 2003.
23 Andrén P. Power spectral density approximations of longitudinal road profiles[J]. International Journal of Vehicle Design, 2006, 40(1/3): 2-14(13).
24 Federal Aviation Administration. Surface roughness final study data collection report[M]. Washington D.C.: Federal Aviation Administration, 2014.
25 谢娟娟, 李晋, 田震等.考虑路面不平顺随机性的汽车过桥动力响应分析[J]. 振动与冲击, 2021, 40(14): 299-306.
XIE Juanjuan, LI Jin, TIAN Zhen, et al. Dynamic response analysis of vehicles crossing a bridge considering the randomness of road surface roughness[J]. Journal of Vibration and Shock, 2021, 40(14): 299-306.
WANG Hanping, ZHANG Zhe, Li Qian. Coherence of phase
26 程国勇, 郭稳厚, 雷亚. 基于MATLAB的机场道面不平度模拟技术研究[J]. 公路工程, 2016, 41(03): 5-7+73.
CHENG Guoyong, GUO Wenhou, LEI Ya. Research of airport pavement roughness simulation technology based on MATLAB[J]. Highway Engineering. 2016 21(3): 5-7+73.
27 刘宗凯, 杨小强, 韩金华. 基于几何特征的不平整路面三维建模与分析研究[J]. 振动与冲击, 2020, 39(16): 188-195.
LIU Zhongkai, YANG Xiaoqiang, HAN Jinhua. A study on 3D modeling and analysis of uneven road based on geometric features[J]. Journal of Vibration and Shock, 2020, 39(16): 188-195.
28 SHI X G, CAI LC, WANG GH, et al. A new aircraft taxiing model based on filtering white noise method[J]. IEEE Access, 2020, 8: 10070-87.
29 黄大山,王炳奇,刘海亮等. 四轮车辆路面激励数学模型[J]. 兵器装备工程学报, 2021, 42(02):142-146.
HUANG Dashan, WANG Bingqi, LIU Hailiang, et al. Research on assessment Method of Vibration Control Feature of Suspension System of Vehicle[J]. Journal of Ordnance Equipment Engineering, 2021, 42(02): 142-146.
30 Loprencipe G, Cantisani G. Unified Analysis of Road Pavement Profiles for Evaluation of Surface Characteristics[J]. Mathematical Models and Methods in Applied Sciences, 2013, 7: 1-14.
31 Chen Y, Chou C. Effects of airport pavement-profile wavelength on aircraft vertical responses[J]. Transportation Research Record, 2004, 1889(1): 83-93.
32 雷继超, 石鑫刚, 蔡良才等. 滤波白噪声法的单轮起落架滑跑模型[J].空军工程大学学报(自然科学版), 2020, 21(3):12-18.
LEI Jichao, SHI Xingang, CAI Liangcai, et al. A quarter landing gear taxiing model based on filtered white noise method[J]. Journal of Air Force Engineering University (Nature Science), 2020, 21(3): 12-18.

PDF(2898 KB)

Accesses

Citation

Detail

段落导航
相关文章

/