不确定刚度和边界约束条件下的轴力识别

李东升1,2,陈琪舟1,2,魏达3,郭鑫3,姜涛1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 208-215.

PDF(1358 KB)
PDF(1358 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 208-215.
论文

不确定刚度和边界约束条件下的轴力识别

  • 李东升1,2,陈琪舟1,2,魏达3,郭鑫3,姜涛1,2
作者信息 +

Axial force identification for uncertain stiffness and boundary constraints

  • LI Dongsheng1,2,CHEN Qizhou1,2,WEI Da3,GUO Xin3,JIANG Tao1,2
Author information +
文章历史 +

摘要

杆系作为桥梁和大跨空间结构等重要土木工程结构的主要受力构件,其轴力的检测非常重要。目前对于杆系结构的轴力识别大都建立在边界约束条件以及杆件刚度已知的基础之上,但大量研究表明实际工程中拉杆的边界约束条件由于荷载和环境条件的变化会变得比较复杂,其实际刚度与设计刚度可能并不相同。本文利用经典Timoshenko梁理论的动力方程,发现在模态信息已知的情况下,杆件轴力和抗弯刚度存在一定线性关系,因此提出利用此线性关系在未知边界约束条件下识别杆件轴力及抗弯刚度的方法。本文通过一个简支梁的数值模拟,以及三种不同截面杆件的轴力识别试验,验证了此方法的有效性。
关键词:Timoshenko梁;轴力识别;抗弯刚度;边界约束条件;模态信息

Abstract

As the main force component of bridge and long-span spatial structure in civil engineering, the measurement of axial force is very important. At present, axial force identification of truss structures is mostly based on the known boundary constraint conditions and stiffness of struts. However, a large number of studies have shown that the boundary constraint conditions of pull struts in practical engineering are complex with the change of loads and environmental conditions, and their actual stiffness is different from the design stiffness. Based on the dynamic equation of the classical Timoshenko beam theory, it is found that there is a certain functional relationship between the axial force and the flexural rigidity of the rods when the modal information is known. Therefore, a method for identifying the axial force and flexural rigidity of the rods under unknown boundary constraints is proposed. The validity of the method is verified by numerical simulation of a simply supported beam and axial force identification tests of three kinds of bars with different sections on a drawing machine.
Key words: Timoshenko beam; identification of axial force; bending stiffness; boundary conditions; modal information

关键词

Timoshenko梁 / 轴力识别 / 抗弯刚度 / 边界约束条件 / 模态信息

Key words

Timoshenko beam / identification of axial force / bending stiffness / boundary conditions / modal information

引用本文

导出引用
李东升1,2,陈琪舟1,2,魏达3,郭鑫3,姜涛1,2. 不确定刚度和边界约束条件下的轴力识别[J]. 振动与冲击, 2022, 41(20): 208-215
LI Dongsheng1,2,CHEN Qizhou1,2,WEI Da3,GUO Xin3,JIANG Tao1,2. Axial force identification for uncertain stiffness and boundary constraints[J]. Journal of Vibration and Shock, 2022, 41(20): 208-215

参考文献

[1]李宏男,李东升. 土木工程结构安全性评估健康监测及诊断述评 [J]. 地震工程与工程振动,2002,22 (3): 82-90.
     Li Hong-nan, Li Dong-sheng. Safety assessment, health monitoring and damage diagnosis for structures in civil engineering[J]. Earthquake Engineering and Engineering Vibration, 2002,22(3):82-90. (in Chinese)
[2]吴康雄, 刘克明, 杨金喜. 基于频率法的索力测量系统[J]. 中国公路学报, 2006(02):62-66.
     Wu Kangxiong, Liu Keming, Yang Jinxi. Measuring System of Cable Tension Based on Frequency Method. [J] China Journal of Highway and Transport, 2006 (02): 62-66. (in Chinese)
[3]R. 克拉夫, J. 彭津. 结构动力学 第二版(修订版)(中译本)[M]. 高等教育出版社, 2006, p293.
R. Kraft, J. Peng Jin. Structural dynamics, Second Edition (Revised Edition) [M]. Higher education press, 2006, p293
[4]刘志勇.斜拉桥斜拉索索力测试方法综述[J].铁道建筑,2007,(4):18-20.
     Liu Zhiyoug. Overview on measuring method of forces in main cable of cable-stayed bridge [J]. Railway Engineering,2007,(4):18-20. (in Chinese)
[5]陈强,黎永索.短吊杆频率法索力系数修正的研究[J].公路工程,2007(05):98-100.
Chen Qiang, Li yongsuo. Research into revising of coefficient of pulling force of short bar by frequency method. [J]. Highway engineering, 2007 (05): 98-100. (in Chinese)
[6]刘文峰,应怀樵,柳春图,考虑刚度及边界条件的索力精确求解,振动与冲击,2003,04期(4):12-4.
Liu Wenfeng, Ying Huaiqiao, Liu chuntu. Precise solution of cable tensile force in consideration of cable stiffness and its boundary conditions. Journal of Vibration and Shock, 2003, 04 (4): 12-4. (in Chinese)
[7]秦杰,高政国,钱英欣,等.预应力钢结构拉索索力测试理论与技术[M].北京:中国建筑工业出版社,2010.
Qin Jie, Gao Zhengguo, Qian Yingxin, et al. Theory and technology of cable tension test for prestressed steel structures [M]. Beijing: China Construction Industry Press, 2010. (in Chinese)
[8]武晓凤.拉索弯曲性能研究[D].天津:天津大学,2014.
Wu Xiaofeng. Research on bending behavior of cables. [D]. Tianjin: Tianjin University, 2014. (in Chinese)
[9]李素贞 , G.D.Roeck, E.Reynders. 杆件轴力的一种识别方法[J]. 振动、测试与诊断 , 2011,31(6):694-699.
Li Suzhen, D.Roeck,E.Reynders. Identification Method for Axial Force of Beam Membe. [J]. Journal of Vibration,Measurement and Diagnosis, 2011,31 (6): 694-699. (in Chinese)
[10]陈强,黎永索. 短吊杆频率法索力系数修正的研究[J]. 公路工程, 2007(05):98-100.
CHEN Qiang,LI Yongsuo. Research into revising of coefficient of pulling force of short bar by frequency method[J]. Highway Engineering, 2007, 32(5): 98-100.
[11]袁永强, 李东升, 李宏男. 基于动力方法的改进杆件轴力识别[J]. 大连理工大学学报,2015,55(05):511-517.
Yuan Yongqiang, Li Dongsheng, Li Hongnan. Investigations on identification of axial forces in bar members by dynamical vibration tests. [J]. Journal of Dalian University of Technology ,2015, 55(05): 511-517. (in Chinese)
[12]李东升, 李坤朋, 魏达. 不同截面杆件轴力识别的理论与试验验证[J]. 振动工程学报,2019,32(01):151-159.
Li Dongsheng, Li Kunpeng, Wei Da. Theory and experimental verification of axial force identification of members with different cross sections [J]. Journal of Vibration Engineering, 2019, 32 (01): 151-159. (in Chinese)
[13]Chen CC, Wu WH, Chen SY, et al. A novel tension estimation approach for elastic cables by elimination of complex boundary condition effects employing mode shape functions[J]. Engineering Structures. 2018;166:152-66.
[14]张戌社, 杜彦良, 孙宝臣,等. 光纤光栅压力传感器在斜拉索索力监测中的应用研究[J]. 铁道学报, 2002, 24(6):47-49.
Zhang Xu she, Du Yan Liang, sun Bao Chen, et al. Application of optical fiber grating pressure sensor on monitoring of cables' tension. [J]. Journal of The China Railway Society, 2002, 24 (6): 47-49. (in Chinese)
[15]王 俊,汪凤泉,周星德.基于波动法的斜拉桥索力测试研究[J].应用科学学报,2005, 23(1):90-93.
Wang Jun, Wang Fengquan, Zhou Xingde. Wave-Based Study for Cable Tension Measurement of Cable-Stayed Bridge. [J]. Journal of Applied Sciences, 2005, 23 (1): 90-93. (in Chinese)
[16]张海东, 田章华, 段元锋,等. 基于磁弹效应的拱桥吊杆索力监测[J]. 结构工程师, 2016, 32(4).
Zhang Haidong, Tian Zhanghua, Duan Yuanfeng, et al. Elasto-magnetic Effect Based Suspender Force Monitoring of an Arch Bridge. [J]. Structural engineer, 2016, 32 (4). (in Chinese)
[17]Yan B, Li D, Chen W, Deng L et al. Mode shape–aided cable force determination using digital image correlation[J]. Structural Health Monitoring, 2020: 1475921720952163.
[18]李宏男, 李东升, 赵柏东. 光纤健康监测方法在土木工程中的研究与应用进展[J]. 地震工程与工程振动, 2002, 22(6):76-83.
Zhang Haidong, Tian Zhanghua, Duan Yuanfeng, et al. Progress in study and application of smart health monitoring method by fiber optic sensor in civil engineering. [J]. Earthquake engineering and engineering vibration, 2002, 22 (6): 76-83. (in Chinese)
[19]Geier R,De Roeck G, Petz J. Cable force determination for the Danube channel bridge in Vienna[J]. Structural engineering international,2005,15(3):181-185.
[20]Mehrabi. A, Tabatabai,Unified  finite  difference  formulation  for  free  vibration  of cables[J].Journal of Structural Engineering.1998.124(11):1313-1322
[21]Chen Z H, Yu Y J, Wang X D, er al . “Experimental research on bending performance of structural cable.” Construction and Building Materials. 2015, 96: 279–288.
[22]余玉洁. 基于拉索半精细化有限元模型的拉索弯曲及断丝研究[D]. 2016.
Yu Yujie. Semi-refined Finite Element Model of Cable and its Application on Bending Behavior and Wire Break. [D]. 2016. (in Chinese)
[23]Papailiou  K  O,  Bending  of  Helically  Twisted  Cables  Under  Variable  Bending Stiffness  Due  to  Internal  Friction, Tensile  Force  and  Cable  Curvature,  Ph.D thesis, Zurich, Switzerland: Swiss Federal Institute of Technology(ETH), 1995.
[24]苏成, 徐郁峰, 韩大建. 频率法测量索力中的参数分析与索抗弯刚度的识别[J]. 公路交通科技, 2005,22(5): 75―78.
Su Cheng, Xu Yufeng, Han Dajian. Parameter analysis and identification of bending stiffness of cables during tension measurements by frequency method [J]. Journal of Highway and Transportation Research and Development, 2005, 22(5): 75―78. (in Chinese)
[25]谢晓峰,索的抗弯刚度识别方法研究,硕士学位论文,中南大学,2012.
Xie Xiaofeng, The flexural rigidity of cable identification method research, master's dissertation, Central South University, 2012. (in Chinese)
[26]Zhang Y P, Wang J F, Ye G R, et al. Bending stiffness of cables of parallel wires including interfacial slips among wires [J]. Journal of Structural Engineering, 2018,144(10): 04018164-1―04018164-9
[27]孟少平, 杨睿, 王景全. 一类精确考虑抗弯刚度影响的系杆拱桥索力测量新公式[J]. 公路交通科技(6):91-95+102.Vibration, 2002,22(3):82-90.
Meng Shaoping, Yang Rui, Wang Jingquan. Novel formula of tension measurement for tied arch bridge in precise consideration of flexural rigidity [J]. Journal of Highway and Transportation Research and Development (6): 91-95 + 102. Vibration, 2002,22 (3): 82-90. (in Chinese)

PDF(1358 KB)

338

Accesses

0

Citation

Detail

段落导航
相关文章

/