基于高斯混合模型和极限状态阈值随机性的概率地震需求分析

贾大卫,吴子燕,何乡

振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 225-234.

PDF(2641 KB)
PDF(2641 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 225-234.
论文

基于高斯混合模型和极限状态阈值随机性的概率地震需求分析

  • 贾大卫,吴子燕,何乡
作者信息 +

Probabilistic seismic demand analysis based on a Gaussian mixture model and limit state threshold randomness

  • JIA Dawei,WU Ziyan,HE Xiang
Author information +
文章历史 +

摘要

传统概率地震需求分析普遍采用对数正态分布假定,且大多基于固定阈值衡量结构性能极限状态,这些简化方法很多时候与实际存在较大偏差。本文提出基于高斯混合模型(Gaussian mixture model ,GMM)的概率地震需求分析法。利用多维性能极限状态方程衡量结构破坏程度。基于增量动力分析法(increment dynamic analysis ,IDA)计算结构工程需求参数(engineering demand parameter ,EDP),基于IDA曲线斜率划分结构阈值。不采用对数正态分布假定,利用GMM分别建立EDP和阈值的概率密度函数,将传统概率地震需求分析的三重积分拓展到五重积分,充分考虑阈值的随机性。利用蒙特卡洛(Monte Carlo ,MC)法求解,得到结构需求年平均超越概率。分别建立某钢筋混凝土框剪和框架结构作为研究对象,以最大层间位移角(MIDR)、最大层加速度(peak floor acceleration,PFA)作为EDP。研究表明:阈值具有较强的随机性,并且会随着破坏程度的提高而提高,忽略阈值随机性会导致结果出现较大偏差;与传统对数正态分布假定相比,基于GMM所得结构需求年平均超越概率偏小,对数正态分布假定会得到不准确的评估结果。
关键词:概率地震需求分析;多维性能极限状态;高斯混合模型;阈值随机性;增量动力分析

Abstract

Traditional probabilistic seismic demand analysis generally adopts the assumption of lognormal distribution, and most researchers adopt fixed threshold for limit state definition. These simplified strategies often deviate from the reality. This paper presents a probabilistic seismic demand analysis method based on Gaussian mixture model (GMM). Multi-dimensional performance limit state equation is used to measure the structure damage degree. Engineering demand parameter (EDP) is calculated based on the increment dynamic analysis (IDA). Structure thresholds under different seismic waves are obtained based on the slope of IDA curves. The probability density functions of EDP and threshold are established by GMM respectively without lognormal assumption. Traditional triple integral of probabilistic seismic demand analysis is extended to the quintuple integral, and the randomness of threshold is fully considered. Monte Carlo (MC) method is adopted, and the annual average exceeding probability of structural demand is obtained. A reinforced concrete (RC) frame-shear wall structure and a frame structure are established respectively as research objects. Maximum story displacement angle and maximum story acceleration are selected as two EDPs. The results show that: the randomness of the threshold is strong, and it will increase with the increase of the damage degree. Ignoring the threshold randomness will lead to large deviation of the results. The annual average exceeding probability of structural demand based on GMM is smaller, which indicates that the lognormal distribution assumption will get inaccurate evaluation results.
Key words: probabilistic seismic demand analysis; multi-dimensional performance limit state; Gaussian mixture model; threshold randomness; increment dynamic analysis

关键词

概率地震需求分析 / 多维性能极限状态 / 高斯混合模型 / 阈值随机性 / 增量动力分析

Key words

probabilistic seismic demand analysis / multi-dimensional performance limit state / Gaussian mixture model / threshold randomness / increment dynamic analysis

引用本文

导出引用
贾大卫,吴子燕,何乡. 基于高斯混合模型和极限状态阈值随机性的概率地震需求分析[J]. 振动与冲击, 2022, 41(20): 225-234
JIA Dawei,WU Ziyan,HE Xiang. Probabilistic seismic demand analysis based on a Gaussian mixture model and limit state threshold randomness[J]. Journal of Vibration and Shock, 2022, 41(20): 225-234

参考文献

[1] 吕大刚,刘洋,于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1-11.
Lü Dagang, Liu Yang, Yu Xiaohui. Seismic fragility models and forward-backward probabilistic risk analysis in second-generation performance-based earthquake engineering [J]. Engineering Mechanics, 2019, 36(9): 1-11.
[2] 钟剑, 万华平, 任伟新, 等. 全概率理论斜拉桥地震风险分析[J]. 振动工程学报, 2018, 31(4): 654―661.
Zhong Jian, Wan Huaping, Ren Weixin, et al. Seismic risk analysis for cable-stayed bridges based on total probability theorem [J]. Journal of Vibration Engineering, 2018, 31(4): 654―661.
[3] Jiang J, EI Nggar H M, Xu C, et al. Effect of ground motion characteristic on seismic fragility of subway station [J]. Soil Dynamics and Earthquake Engineering, 2021,143:106618.
[4] Khorami M, Khorami M, Motahar H, et al. Evaluation of the seismic performance pf special moment frames using incremental nonlinear dynamic analysis [J]. Structural Engineering and Mechanics, 2017,63(2):259-268.
[5] Banihashemi M R, Mirzagoltabar A R, Tavakoli H R. Reliability and fragility curve assessment of steel concentrically braced frames [J]. European Journal of Environmental and Civil Engineering. 2015, 20(7): 748-770.
[6] 蒋亦庞,苏亮,黄鑫. 考虑参数不确定性的无筋砌体结构地震易损性分析[J]. 工程力学, 2020, 37(1): 159-167.
Jiang Yipang, Su Liang, Huang Xin. Seismic fragility analysis of unreinforced masonry structures considering parameter uncertainties [J]. Engineering Mechanics, 2020, 37(1): 159-167.
[7] Khaloo A, Nozhati S, Masoomi H, et al. Influence of earthquake record truncation on fragility curves of RC frames with different damage indices [J]. Journal of Building Engineering, 2016, 7: 23-30.
[8] Jafarian Y, Lashgari A, Miraiei M. Multivariate fragility functions for seismic landslide hazard assessment [J]. Journal of Earthquake Engineering, 2021,25(3):579-596.
[9] Mangalathu S, Jeou J S. Strip-based fragility analysis of multispan concrete bridge classes using machine learning techniques [J]. Earthquake Engineering and Structural Dynamics,2019,48(11):1238-1255.
[10] Cornell A C, Jalayer F, Hamburger R O. Probabilistic basic for 2000 SAC federal emergency management agency steel moment frame guidelines [J]. Structural Engineering. 2002, 128(4):526-532.
[11] Karamlou A, Bochini P. Computation of bridge seismic fragility by large-scale simulation for probabilistic resilience analysis [J]. Earthquake Engineering and Structural Dynamics, 2015,44(12):1959-1978.
[12] 袁万城,袁新哲,庞于涛,等. 非线性参数拟合的桥梁概率地震需求模型研究[J]. 哈尔滨工程大学学报,2015,36(9):1212-1216.
Yuan Wancheng, Yuan Xinzhe, Pang Yutao, et al. A probabilistic seismic demand model by nonlinear parameter fitting method [J], Journal of Harbin Engineering University, 2015,36(9):1212-1216.
[13] Wang Q A, Wu Z Y, Liu S K. Multivariate probabilistic seismic demand model for the bridge multidimensional fragility analysis [J]. KSCE Journal of civil engineering. 2018, 22(9): 3443-3451.
[14] Zhang Y, Wu G. Seismic vulnerability analysis of RC bridges based on Kriging model [J]. Journal of Earthquake Engineering, 2019,23(2):242-260.
[15] Su L, Li X L, Jiang Y P. Comparison of methodologies for seismic fragility analysis of unreinforced masonry buildings considering epistemic uncertainty [J]. Engineering Structures, 2020,25:110059.
[16] 周颖,吕西林,卜一. 增量动力分析法在高层混合结构性能评估中的应用[J]. 同济大学学报(自然科学版), 2010, 38 (2): 183-187,193.
Zhou Ying, Lv Xilin, Bo Yi. Application of Incremental Dynamic Analysis to Seismic Evaluation of Hybrid Structure [J]. Journal of Tongji University (Natural Science), 2010, 38 (2): 183-187,193.
[17] 张鹏辉,郭军军,周连绪,等. 基于BOX-COX变换的桥梁结构地震易损性分析[J]. 振动与冲击, 2021,40(1): 192-198.
Zhang Penghui, Guo Junjun, Zhou Lianxu, et al. Seismic vulnerability analysis of bridge structure based on BOX-COX transformation [J]. Journal of Vibration and Shock, 2021,40(1): 192-198.
[18] Do Bach, Ohsaki M. Gaussian mixture model for robust design optimization of planar steel frames [J]. Structural and Multidisciplinary Optimization, 2021, 63: 137-160.
[19] Mangalathu S, Jeon J S. Stripe-based fragility analysis of multispan concrete bridge classes using machine learning techniques [J]. Earthquake Engineering and Structural Dynamics, 2019, 48(11):1238-1255.
[20] 谷音, 郑文婷, 卓卫东. 基于LHS-MC方法的矮塔斜拉桥地震风险概率分析[J]. 工程力学, 2013, 30(8): 96-102.
Gu Yin, Zheng Wenting, Zhuo Weidong. Analysis of seismic risk probability assessment of lower-tower cable-stayed bridge based on LHS-MC method [J]. Engineering Mechanics, 2013, 30(8): 96-102.
[21] Cinellaro G P, Reinhorn A M. Multidimensional performance limit state for hazard fragility functions. Journal of Engineering Mechanics [J], 2011,137 (1):47-60.
[22] 黄小宁,杜永峰,李慧. 多维性能极限状态平面不规则结构易损性分析[J]. 振动、测试与诊断, 2017, 37(3): 560-566.
Huang Xiaoning, Du Yongfeng, Li Hui. Multidimensional performance limit states for fragility analysis of plane irregular structure [J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(3): 560-566.
[23] Liu X X, Wu Z Y, Liang F. Multidimensional performance limit state for probabilistic seismic demand analysis [J]. Bulletin of Earthquake Engineering, 2016, 14(12):3389-3408.
[24] 赵渊,张夏菲,周家启. 电网可靠性评估的非参数多变量核密度估计负荷模型研究[J]. 中国电机工程学报, 2009, 29(31): 27-33.
Zhao Yuan, Zhang Xiafei, Zhou Jiaqi. Load modeling utilizing nonparametric and multivariate kernel density estimation in bulk power system reliability evaluation [J]. Proceedings of the CSEE, 2009, 29(31): 27-33.
[25] 何益斌, 李艳, 沈蒲生. 基于性能的高层混合结构地震易损性分析[J]. 工程力学, 2013, 30(8): 142-148.
He Yibin, Li Yan, Shen Pusheng. Performance-based seismic fragility analysis of tall hybrid structures [J]. Engineering Mechanics, 2013, 30(8): 142-148.
[26] Kiani J, Camp C, Pezeshk S. On the application of machine learning techniques to derive seismic fragility curves [J]. Computers & Structures, 2019, 218: 108-122.
[27] 韩建平, 周帅帅. 考虑非结构构件损伤的钢筋混凝土框架建筑多维地震易损性分析[J]. 地震工程与工程振动, 2020, 40(1): 39-48.
Han Jianping, Zhou Shuaishuai. Multi-dimensional seismic fragility analysis of reinforced concrete framed building considering damage of non-structural components [J]. Earthquake Engineering and Engineering Vibration, 2020, 40(1): 39-48.
[28] 孙鸿宾, 吴子燕, 刘骁骁. 基于多维性能极限状态的结构易损性分析[J]. 工程力学, 2013, 30(5): 147-152.
Sun Hongbin, Wu Ziyan, Liu Xiaoxiao. Multidimensional performance limit states for structural fragility estimation [J]. Engineering Mechanics, 2013, 30(5): 147-152.
[29] Vamvatsikos D, Cornell C A. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics. 2002; 31(3): 491-514. 
[30] Oh B W, Glisic B, Park S W, et al. Neural network-based seismic response prediction model for building structures using artificial earthquakes [J]. Journal of Sound and Vibration, 2020, 468: 115109.
[31] GB 50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2016
GB 50011-2010 Code for seismic design of buildings [S]. Beijing: China Construction Industry Press, 2016.
[32] 刘骁骁,吴子燕,王其昂. 基于多维性能极限状态的概率地震需求分析[J].振动与冲击, 2017, 36(1):181-187.
Liu Xiaoxiao, Wu Ziyan, Wang Qiang. Probabilistic seismic demand analysis based on multi-dimensional performance limit states [J]. Journal of Vibration and Shock. 2017, 36(1):181-187.

PDF(2641 KB)

268

Accesses

0

Citation

Detail

段落导航
相关文章

/