TC4钛合金复合加载下超高周疲劳性能研究

王博涵1,程礼1,2,李冬春1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 244-251.

PDF(2290 KB)
PDF(2290 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 244-251.
论文

TC4钛合金复合加载下超高周疲劳性能研究

  • 王博涵1,程礼1,2,李冬春1
作者信息 +

A study on very high cycle fatigue properties of TC4 titanium alloy under combined loading

  • WANG Bohan1, CHENG Li1,2, LI Dongchun1
Author information +
文章历史 +

摘要

针对航空发动机压气机叶片在实际工况下的超高周疲劳断裂问题,研究了三种锻造温度下TC4钛合金三点弯曲–轴向拉伸复合加载的疲劳破坏行为。试验结果表明,S-N曲线呈直线下降型和双平台型,采用985 ℃近锻造时疲劳性能最好。随着应力幅值降低,裂纹由表面萌生向次表面萌生转变,断口形貌呈现准解理断裂特征。表面裂纹萌生于α晶界或α-β相界,由位错滑移堆积导致;而次表面裂纹萌生于刻面,由初生α相解理导致。疲劳寿命由裂纹萌生阶段主导,且所占比例随总寿命的增加而变大。双态组织中初生α含量和尺寸均小于等轴组织,且β转变组织含量更高,从而具备更好的疲劳性能。轴向拉伸改变了试件的轴向应力分布,有利于提高裂纹萌生于次表面的概率,使裂纹起源点向内部迁移。
关键词:TC4钛合金;复合加载;超高周疲劳;S-N曲线;微观组织

Abstract

Aiming at the fatigue fracture problem of aero-engine compressor blades under actual working conditions, the fatigue failure behavior of TC4 titanium alloy at three forging temperatures under three-point bending-axial tensile composite loading was studied. The test results show that the S-N curve is linear decline type and double platform type, and the fatigue performance is the best when forging at 985 ℃. With the decrease of stress amplitude, the crack changes from surface initiation to subsurface initiation, and the fracture morphology shows the characteristics of quasi-cleavage fracture. The surface crack originates at the α grain boundary or α-β phase boundary, which is caused by the slip and accumulation of dislocations, while the subsurface crack originates in the facet and is caused by the cleavage of the primary α phase. The fatigue life is dominated by the crack initiation stage, and the proportion increases with the increase of the total life. The content and size of primary α in the bimodal microstructure are smaller than that in the equiaxed microstructure, and the content of β transformation microstructure is higher, so it has better fatigue properties.The axial tension changes the axial stress distribution of the specimen, which is beneficial to increase the probability of crack initiation on the subsurface and make the crack origin point migrate to the interior.
Key words: TC4 titanium alloy; composite loading; very high cycle fatigue; S-N curve; microstructure

关键词

TC4钛合金 / 复合加载 / 超高周疲劳 / S-N曲线 / 微观组织

Key words

 TC4 titanium alloy / composite loading / very high cycle fatigue / S-N curve / microstructure

引用本文

导出引用
王博涵1,程礼1,2,李冬春1. TC4钛合金复合加载下超高周疲劳性能研究[J]. 振动与冲击, 2022, 41(20): 244-251
WANG Bohan1, CHENG Li1,2, LI Dongchun1. A study on very high cycle fatigue properties of TC4 titanium alloy under combined loading[J]. Journal of Vibration and Shock, 2022, 41(20): 244-251

参考文献

[1] 洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展, 2018, 48: 1-16.
HONG Youshi, SUN Chengqi, LIU Xiaolong. A review on mechanisms and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48: 1-16.
[2] 陶春虎,刘庆瑔,曹春晓等.航空用钛合金的失效及其预防[M]. 北京:国防工业出版社,2013.
[3] 宋兆泓. 航空发动机典型故障分析[M]. 北京:北京航空航天大学出版社,1993.
 [4] 左景辉, 王中光, 韩恩厚. Ti-6Al-4V合金的超高周疲劳行为[J],金属学报, 2007, 43(7): 705-709.
ZUO Jinghui, WANG Zhongguang, HAN Enhou. Ultra-high cycle fatigue behavior of Ti-6Al-4V Alloy[J]. Acta Metallurgica Sinica, 2007, 43(7): 705-709.
[5] BATHIAS C, PARIS P C. Gigacycle fatigue in mechanical practice [M]. New York: Taylor & Francis Group, 2005.
[6] FURUYA Y, NISHIKAWA H, HIRUKAWA H, et al. Catalogue of NIMS fatigue data sheets[J]. Science and Technology of Advanced Materials, 2019, 20(1): 1055-1072.
[7] YANG K, HE C, HUANG Q, et al. Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios[J]. International Journal of Fatigue, 2017, 99: 35-43.
[8] PAN X N, SU H, SUN C Q, et al. The behavior of crack initiation and early growth in high-cycle and very-high-cycle fatigue regimes for a titanium alloy[J]. International Journal of Fatigue, 2018, 115: 67-78.
[9] HEINZ S, EIFLER D. Crack initiation mechanisms of Ti6Al4V in the very high cycle fatigue regime [J]. International Journal of Fatigue, 2016, 93: 301-308.
[10] 杲宁,李伟. 应力比对 TC4 钛合金超高周疲劳失效机理的影响.[J]工程科学学报, 2019, 41(2): 254-260.
GAO Ning, LI Wei. Effect of stress ratio on the very high-cycle fatigue failure mechanism of TC4 titanium alloy[J]. Chinese Journal of Engineering, 2019, 41(2): 254-260.
[11] NIKITINA A, PALIN-LUC T, SHAN-YAVSKIY A. Crack initiation in VHCF regime on forged titanium alloy under tensile and torsion loading modes [J]. International Journal of Fatigue, 2016, 93: 318-325.
[12] 李全通, 刘青川, 申景生,等. TC17钛合金超高周弯曲振动疲劳试验[J]. 航空动力学报, 2012, 27(3):617-622.
LI Quantong, LIU Qingchuan, SHEN Jingsheng, et al. Experiment on ultra-high cycle bending vibration fatigue of titanium alloy TC17[J]. Journal of Aerospace Power, 2012, 27(3):617-622.
[13] 鲁凯举, 程礼, 陈煊, 等. TC4钛合金三点弯曲超高周疲劳性能研究[J]. 稀有金属材料与工程, 2019, 48(10): 3175-3182.
LU Kaiju, CHENG Li, CHEN Xuan, et al. Very-high-cycle-fatigue properties of TC4 titanium alloy under three-point bending[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3175-3182.
[14] WANG B H, CHENG L, DING J L, et al. Effects of geometric parameters and axial tension on vibration characteristics[J]. Journal of Physics: Conference Series, 2020,1637:293-303.
[15] LI W, XING X X, GAO N, et al. Subsurface crack nucleation and growth behavior and energy-based life prediction of a titanium alloy in high-cycle and very-high-cycle regimes[J]. Engineering Fracture Mechanics, 2019, 221(106705): 1-14.
[16] HONG Y S, LEI Z Q, SUN C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels[J]. International Journal of Fatigue, 2014, 58: 144-151.
[17] SEKERCIOGLU T, CANYURT O E. Development of the positive mean stress diagrams using genetic algorithm approach[J]. Fatigue & Fracture of Engineering Materials & Structures, 2014, 37: 306-313.
[18] KUN Y, ZHONG B, HUANG Q, et al. Stress ratio and notch effects on the very high cycle fatigue properties of a near-alpha titanium Alloy[J]. International Journal of Fatigue, 2018, 116: 80-89.
[19] LIU X L, SUN C Q, HONG Y S, et al. Faceted crack initiation characteristics for high-cycle and very-high-cycle fatigue of a titanium alloy under different stress ratios[J]. International Journal of Fatigue, 2016, 92: 434-441.
[20] LIU X L, CHEN E Q, ZENG F, et al. Mechanisms of interior crack initiation in very-high-cycle fatigue of high-strength alloys[J]. Engineering Fracture Mechanics, 2019, 212: 153-163.
[21] ZUO J H, WANG Z G, HAN E H. Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V[J]. Materials Science and Engineering A, 2008, 473: 147-152.
[22] STANZL TSCHEGG S, MUGHRABI H, SCHOENBAUER B. Life time and cyclic slip of copper in the VHCF regime[J]. International Journal of Fatigue, 2007, 29: 2050-2059.
[23] CHAI G. The formation of subsurface non-defect fatigue crack origins[J]. International Journal of Fatigue, 2006, 28: 1533-1539.
[24] CHAI G, ZHOU N, CIUREA S, et al. Local plasticity exhaustion in a very high cycle fatigue regime[J]. Scripta Materialia, 2012, 66:769-772.
[25] LI W, ZHAO H, NEHILA A, et al. Very high cycle fatigue of TC4 titanium alloy under variable stress ratio: failure mechanism and life prediction[J]. International Journal of Fatigue, 2017, 104: 342-354.
[26] 贺瑞军, 王华明. 激光沉积Ti-6Al-2Zr-Mo-V钛合金高周疲劳性能[J]. 航空学报, 2010, 31(7): 1488-1493.
HE Ruijun, WANG Huaming. HCF Properties of Laser Deposited Ti-6Al-2Zr-Mo-V Alloy[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1488-1493.

PDF(2290 KB)

Accesses

Citation

Detail

段落导航
相关文章

/