新型半潜式浮式风机动力特性试验研究

赵战华1,范亚丽1,匡晓峰1,周舒旎2,张凯1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 252-257.

PDF(1553 KB)
PDF(1553 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 252-257.
论文

新型半潜式浮式风机动力特性试验研究

  • 赵战华1,范亚丽1,匡晓峰1,周舒旎2,张凯1
作者信息 +

Experimental study on dynamic characteristic of a new semi-submersible floating offshore wind turbine

  • ZHAO Zhanhua1,  FAN Yali1,  KUANG Xiaofeng1,  ZHOU Shuni2,  ZHANG Kai1
Author information +
文章历史 +

摘要

以新型半潜式浮式风机系统为研究对象,建立全耦合物理水池试验模型。通过系列水池模型试验,对浮式风机的固有特征和多物理场全耦合作用下系统总体响应进行试验研究。研究结果表明,系统六自由度固有周期均远离实际海上波浪频率范围,作业环境3.92m有义波高和极端环境9.5m有义波高下纵/横摇运动最大值显著小于设计要求最大值约50%和10%,表明新型浮式平台具有优良的运动稳性。试验中还发现作业过程中塔筒顶部载荷存在叶片3P振动与塔筒一阶固有频率多模态叠加谐振现象,应当在结构优化中给予关注。
关键词:新型;半潜式;耦合;塔筒顶部载荷;水池试验

Abstract

Taking a new semi-submersible floating wind power system as the research object, a fully coupled physical pool test model is established. Through a series of pool model tests, the inherent characteristics of the floating wind turbine system and the overall response of the system under the full coupling of multiple physical fields are studied. The results show that the six degrees of freedom natural periods of the system are far away from the actual offshore wave frequency range, and the maximum pitch motion is significantly less than the design permitted maximum value by 50% and 10% for operation condition Hs 3.92m and extreme condition Hs 3.92m, indicating that the new floating platform has excellent motion stability. It is also found in the test that there is a multi-modal superposition resonance between the 3P rotation of the blade and natural period of the tower, which should be paid attention to in the structural optimization.
Key word: New type;Semi-submersible;Coupling;Tower top load;Pool test

关键词

新型 / 半潜式 / 耦合 / 塔筒顶部载荷 / 水池试验

Key words

New type / Semi-submersible / Coupling / Tower top load / Pool test

引用本文

导出引用
赵战华1,范亚丽1,匡晓峰1,周舒旎2,张凯1. 新型半潜式浮式风机动力特性试验研究[J]. 振动与冲击, 2022, 41(20): 252-257
ZHAO Zhanhua1, FAN Yali1, KUANG Xiaofeng1, ZHOU Shuni2, ZHANG Kai1. Experimental study on dynamic characteristic of a new semi-submersible floating offshore wind turbine[J]. Journal of Vibration and Shock, 2022, 41(20): 252-257

参考文献

[1] 聂炎. 漂浮式风机基础结构强度设计[J].水电与新能源,2019,33(4):74-78.
Nie Yan. Structural strength desgin of the floating wind turbine foundation[J]. Hydropower and new energy, 2019,33(4):74-78.
[2] HYUNKYOUNG S et al. Motion of OC4 5MW semi-submersible offshore wind turbine in irregular waves [C].Proceedings of the ASME 2013 32nd International conference on ocean, Offshore and Arctic Engineering. Nants,2013.
[3] Ladenburg J.Attitudes towards on-land and offshore wind power development in Denmark; choice of development strategy[J]. Renewable Energy. 2008.33(1):111-118.
[4] 陈嘉豪,裴爱国,马兆荣等. 海上漂浮式风机关键技术研究进展[J].南方能源建设,2020,7 (1):8-19.
Chen Jiahao,Pei Aiguo, Ma Zhaorong et al. A review of the key technology for floating offshore wind turbines [J].Southern energy construction, 2020,7 (1):8-19.
[5] CRUZ J, MAIREAD A. Floating offshore wind energy : the next generation of wind energy[M].Berlin: Springer, 2016.
[6] 郭子伟,孟龙,赵永生等. 海上浮式风机水池模型试验方法及其研究进展[J].中国海洋平台, 2016,31(6):1-8.
Guo Ziwei, Meng Long, Zhao Yongsheng. Development and Method of the Offshore Floating Wind Turbines Wave-tank Model Test. China Offshore Platform, , 2016,31(6):1-8.
[7] AUBAULTA,CERMELLI C, RODDIER D. Windfloat: A floating foundation for offshore wind turbines part Ⅲ: Structural analysis[C]// 28th International conference on ocean, offshore and arctic engineering, OMAE2009. Honolulu, HI:[s.n.],2009, 1:213-220.
[8] KVITTEM M I, BACHYNSKI E E, MOAN T. Effects of hydrodynamic modeling in fully coupled simulations of a semi-submersible wind turbine [J]. Energy Procedia, 2012,24:351-362.
[9] Andrew J, Richard W, Bonjun Koo, Richard W et al. Experiment comparison of three floating wind turbine concepts, Proceedings of ASME 2012,31st International Conference on Ocean, Offshore and arctic Engineering. Brazil,OMAE,2012: OMAE2012-83645.
[10] Coulling A J,Goupee A J,Robertson A N,et al. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data[J]. Journal of Renewable and Sustainable Energy,2013,5( 2) : 023116.
[11] KOO B J, GOUPEE A  J, KIMBALL R  W, et al. Model tests for a floating wind turbine on three different floaters[J]. Journal of Offshore Mechanics and Arctic Engineer . 2014, 136.
[12]赵志新,李昕,王文华等.超大型和大型半潜浮式海上风力机动力响应对比[J].海洋工程,2020,38 (2):101-110.
Zhao Zhixin,Li Xin, Wang Wenhua et al. Comparison of dynamic response between ultra-large and large semi-submersible floating wind turbines [J].The ocean engineering, 2020,38 (2):101-110.
[13] 李修赫,朱才朝,谭建军等.风浪不共线对浮式风机基础动态特性影响研究[J].振动与冲击,2020,39(13):230-237.
Li Xiuhe, Zhu Caichao, Tan Jianjun et al. Effects of wind -wave misalignment on dynamic characteristics of floating offshore wind turbine foundation[J].Journal of Vibration and Shock,2020,39(13):230-237.
[14] 李良. 半潜式浮式风机动力响应机理的理论与模型试验研究[D].上海交通大学,2015.
Li Liang. Theoretical and experimental research on dynamic response of a semi-submersible floating wind turbine[D]. Shanghai Jiao Tong University,2015.
[15] 杜炜康. 浮式海上风力机试验模型叶片优化设计与性能研究[D].上海交通大学,2014.
Du Weikang. Design and analysis of a model wind turbine blade for wave basin test of floating wind turbines[D]. Shanghai Jiao Tong University,2014.
[16] 郭子伟. 浮式风力机水池模型试验叶片设计方法研究[D].上海交通大学,2018.
Du Weikang. Study of blade design method for floating wind turbine basin model test[D]. Shanghai Jiao Tong University,2018.
[17]  蔡恒. 海上浮式风机在风浪流联合作用下的运动响应分析[D].上海交通大学,2018.
Cai Heng. Dynamic Response analysis of floating offshore wind turbine in combined wind and wave[D]. Shanghai Jiao Tong University,2018.
[18] 张琦,彭志科,寇雨丰,田新亮. 海洋工程试验的浮式风力发电机模型设计[J].试验室研究与探索,2019.
Zhang Qi, Peng Zhike, Kou Yufeng, Tian Xinliang. Model design of floating offshore wind turbine and application in ocean engineer tests[J].Research and Exploration in Laboratory, ,2019,38(6):51-56..

PDF(1553 KB)

Accesses

Citation

Detail

段落导航
相关文章

/