针对碟簧(disc springs ,DS)、橡胶–碟簧等结构的阻尼性能差以及抗高温等恶劣环境能力弱,采用正弦力激励法对添加弹性阻尼金属橡胶(entangled metallic wire material,EMWM)后的叠层复合结构进行试验研究。以耗能量、损耗因子和动态平均刚度为评价指标,分析了不同激励条件和不同金属橡胶密度对金属橡胶/碟簧叠层复合结构阻尼性能的影响。基于迹法等效阻尼模型,考虑弹性恢复力和阻尼力随变形幅值、频率的变化规律,用参数分解识别法建立该复合结构在一定载荷下的非对称迟滞模型。结果表明,预测的滞回曲线与实测曲线吻合度高,参数识别精度能够满足工程应用的要求。
关键词:金属橡胶(EMWM);碟簧(DS);叠层复合结构;动态阻尼;非对称迟滞模型;参数识别
Abstract
In view of the low damping performance of disc springs (DS), natural rubber-disc springs, and their weak ability to resist high temperature and other harsh environments, the laminated composite dampers with elastic damping entangled metallic wire materials (EMWMs) were studied by sinusoidal force excitation method. The effects of different excitation conditions and different EMWMs densities on the damping performance of entangled metallic wire materials/disc springs laminated composite dampers (EMWM/DS) were analyzed by taking energy dissipation factor, loss factor and dynamic average stiffness as evaluation indexes. Based on the equivalent damping model of the trace method, considering the variation of elastic restoring force and damping force with the amplitude and frequency of deformation, the asymmetric hysteresis model of the EMWM/DS under specific load was established by the identification method of parameter decomposition. The results show that the theoretical loop is consistent with the measured curve, and the parameter identification accuracy can meet engineering application requirements.
Key words: entangled metallic wire material (EMWM); disc spring(DS); laminated composite structure; dynamic damping; asymmetric hysteresis model; parameter identification
关键词
金属橡胶(EMWM) /
碟簧(DS) /
叠层复合结构 /
动态阻尼 /
非对称迟滞模型 /
参数识别
{{custom_keyword}} /
Key words
entangled metallic wire material (EMWM) /
disc spring(DS) /
laminated composite structure /
dynamic damping /
asymmetric hysteresis model /
parameter identification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DHARAN C K H, BAUMAN J A. Composite disc springs[J]. Composites Part A,2007, 38(12):2511-2516.
[2] ZHENG E L, JIA F, ZHOU X L. Energy-based method for nonlinear characteristics analysis of Belleville springs[J]. Thin-Walled Structures, 2014, 79:52-61.
[3] DING Y K, LIU Y T. Cyclic tests of assembled self-centering buckling-restrained braces with pre-compressed disc springs[J]. Journal of Constructional Steel Research, 2020, 172: 106229.
[4] HADAD A A,SHAHROOZ B M,FORTNEY P J. Innovative resilient steel braced frame with Belleville disk and shape memory alloy assemblies[J]. Engineering Structures,2021, 237: 112166.
[5] PAREDES M, DAIDIÉ A. Optimal catalogue selection and custom design of belleville spring arrangements[J]. International Journal on Interactive Design and Manufacturing (IJIDeM). 2010, 4(1):51-59.
[6] 肖舒恒,顾伯勤. 碟簧螺栓连接系统冲击响应分析[J]. 振动与冲击,2013, 32(18): 101-104.
XIAO Shuheng,GU Boqin. Shock response analysis for a bolted connection system with disk spring[J]. Journal of Vibration and Shock. 2013, 32(18): 101-104.
[7] 都军民,戴双献. 碟形弹簧减振器动态特性研究[J]. 工程机械. 2009, 40(11): 15-18.
DU Junmin,DAI Shuangxian. Research on dynamic characteristics of saucer dampers[J]. Construction Machinery and Equipment. 2009, 40(11): 15-18.
[8] 王维,李爱群,周德恒,等. 新型三维多功能隔振支座设计及其隔振分析[J]. 东南大学学报(自然科学版). 2014, 44(4): 787-792.
WANG Wei,LI Aiqun,ZHOU Deheng,et al. Design of novel three-dimension multifunctional isolation bearing and its isolation behavior analysis[J]. Journal of Southeast University (Natural Science Edition). 2014, 44(4): 787-792.
[9] JIA F, SHA H W, ZHANG F C. Mechanical properties and impact response of disc-spring vibration isolator combined with polyurethane pieces[J]. International Journal of Intelligent Systems Technologies and Applications,2014, 13(1/2):117-137.
[10] REN Z Y, SHENG L L, BAI H B, et al. Constitutive model of disordered grid interpenetrating structure of flexible microporous metal rubber[J]. Mechanical Systems and Signal Processing,2021, 154: 107567.
[11] MA Y H, ZHANG Q C, ZHANG D Y, et al. A novel smart rotor support with shape memory alloy metal rubber for high temperatures and variable amplitude vibrations[J]. Smart Materials and Structures. 2014, 23(12): 125016.
[12] 肖坤,白鸿柏,薛新,等. 金属橡胶包覆阻尼结构的高温耗能特性[J]. 机械工程材料. 2019, 43(9): 28-32.
XIAO Kun, BAI Hongbai, XUE Xin, et al. High temperature energy dissipation characteristics of damping structure coated with metal rubber[J]. Materials for Mechanical Engineering,2019, 43(9): 28-32.
[13] CARRASCAL I A, PÉREZ A, CASADO J A, et al. Experimental study of metal cushion pads for high speed railways[J]. Construction and Building Materials,2018, 182: 273-283.
[14] 白鸿柏,路纯红,曹凤利,等. 金属橡胶材料及工程应用[M]. 北京:科学出版社, 2014.
[15] 中国船舶重工集团第七〇四研究所.振动与冲击隔离器静、动态性能测试方法:GB/T 15168—2013[S].北京:中华人民共和国国家质量监督检验检疫总局, 2013.
[16] 惠安民,金映丽,张磊,等. 边界摩擦条件下含有预紧的对合碟簧隔振单元的振动特性[J]. 振动与冲击,2021, 40(2): 228-234.
HUI Anmin, JIN Yingli, ZHANG Lei, et al. Vibration characteristics of a disc spring vibration isolator with pre-tightening under boundary friction condition[J]. Journal of Vibration and Shock, 2021, 40(2): 228-234.
[17] NI Y Q, KO J M, WONG C W, et al. Modelling and identification of a wire-cable vibration isolator via a cyclic loading test[J]. Journal of Systems and Control Engineering,1999, 213(3): 163-172.
[18] 吴善跃,朱石坚. 钢丝绳减振器非对称迟滞模型的参数分解识别研究[J]. 振动工程学报,2007(6): 613-616.
WU Shanyue, ZHU Shijian. Separated identification of asymmetric hysteretic model parameters for a wire-cable vibration isolator[J]. Journal of Vibration Engineering,2007(6): 613-616.
[19] 周相荣,温建明. 钢丝绳减振器准静态非对称迟滞模型参数识别[J]. 噪声与振动控制,2013, 33(5): 170-172.
ZHOU Xiangrong, WEN Jianming. Parameter identification of quasi-static asymmetric hysteresis model for wire-rope isolators[J]. Noise and Vibration Control,2013, 33(5): 170-172.
[20] 戴德沛. 阻尼技术的工程应用[M]. 北京:清华大学出版社, 1991.
[21]CAO F L, BAI H B, HE Z B, et al. A hysteresis restoring force model of disc-shaped metal rubber isolation component[J]. Applied Mechanics and Materials, 2013, 271/272:186-189.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}