霍普金森杆在电火花气泡脉动载荷测量中的应用

马春龙1,2,史冬岩1,何东泽1,王孟楠1,崔雄伟3,姜宇2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 28-36.

PDF(2176 KB)
PDF(2176 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 28-36.
论文

霍普金森杆在电火花气泡脉动载荷测量中的应用

  • 马春龙1,2,史冬岩1,何东泽1,王孟楠1,崔雄伟3,姜宇2
作者信息 +

Application of a Hopkinson bar in the measurement of electric spark bubble pulsating load

  • MA Chunlong1,2,SHI Dongyan1,HE Dongze1,WANG Mengnan1,CUI Xiongwei3,JIANG Yu2
Author information +
文章历史 +

摘要

电火花气泡是研究水下爆炸气泡的一种常用手段。高压电放电、起爆瞬间会产生极强的电干扰性。所以在使用压电型压力传感器测量极近场电火花气泡脉动载荷时,测得的“压力–时间”曲线有时会出现“零飘”、“紊乱”、“失真”等现象。目前,极近场条件下对电火花气泡脉动载荷特性的研究较少。霍普金森杆基于应力波传递原理,利用其上的半导体应变片将应变信号转化为压力信号,能很好地解决电干扰的问题。该研究利用受国内外认可的CY-YD-205系列传感器在相同工况下验证了霍普金森杆对极近场电火花气泡脉动载荷的测量效果。同时,该研究采用400 V高压电放电形成的电火花气泡研究了半球边界条件下电火花气泡脉动载荷特性。从试验结果可知,该研究提出的试验系统可以成功地测量电火花气泡脉动载荷,包括极近场情况。研究结果可为复杂边界条件下近场水下爆炸气泡脉动载荷提供新的有效测量方法。
关键词:电火花气泡;气泡脉动载荷;霍普金森杆;压力传感器

Abstract

Electric spark bubbles are a common method for studying underwater explosion bubbles. High voltage discharge and detonation will produce extremely strong electrical interference at the moment. Therefore, when the piezoelectric pressure sensor is used to measure the pulsating load of a very near-field electric spark bubble, the measured "pressure-time" curve sometimes shows "zero drift", "disorder", "distortion" and other phenomena. At present, there are few studies on the characteristics of electric spark bubble pulsation load under very near field conditions. The Hopkinson bar is based on the principle of stress wave transfer, using the semiconductor strain gauge on it to convert the strain signal into a pressure signal, which can well solve the problem of electrical interference. This study uses the domestically and internationally recognized CY-YD-205 series sensors to verify the measurement effect of the Hopkinson bar on the extremely near-field spark bubble pulsation load under the same working conditions. At the same time, this study used the spark bubbles formed by 400V high voltage electric discharge to study the pulsating load characteristics of spark bubbles under hemispherical boundary conditions. It can be seen from the experimental results that the experimental system proposed in this paper can successfully measure the pulsation load of spark bubbles, including very near-field conditions. This paper provides a new effective measurement method for studying the bubble pulsation load of near-field underwater explosions under complex boundary conditions.
Key words: electric spark bubbles; bubble pulsation load; Hopkinson bar; pressure sensor

关键词

电火花气泡 / 气泡脉动载荷 / 霍普金森杆 / 压力传感器

Key words

electric spark bubbles / bubble pulsation load / Hopkinson bar / pressure sensor

引用本文

导出引用
马春龙1,2,史冬岩1,何东泽1,王孟楠1,崔雄伟3,姜宇2. 霍普金森杆在电火花气泡脉动载荷测量中的应用[J]. 振动与冲击, 2022, 41(20): 28-36
MA Chunlong1,2,SHI Dongyan1,HE Dongze1,WANG Mengnan1,CUI Xiongwei3,JIANG Yu2. Application of a Hopkinson bar in the measurement of electric spark bubble pulsating load[J]. Journal of Vibration and Shock, 2022, 41(20): 28-36

参考文献

[1] LUO J, XU W L, DENG J, et al. Experimental study on the impact characteristics of cavitation bubble collapse on a wall[J]. Water, 2018,10(9):1262.
[2] PHILIPP  A, LAUTERBORN W.Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 1998,361: 75- 116.
[3] CHAHINE G L, FRANC J P,KARIMI A. Cavitation and cavitation erosion[J]. Fluid Mechanics and its Applications,2014,106: 3-20.
[4] CUI P, ZHANG A M, WANG S P. Small-charge underwater explosion bubble experiments under various boundary conditions[J]. Physics of Fluids, 2016, 28(11): 117103.
[5] CHAHINE G L, KAPAHI A, CHOI J K, et al.Modeling of surface cleaning by cavitation bubble dynamics and collapse[J].Ultrasonics Sonochemistry, 2016,29:528-549.
[6] HAN H, LEE H, KIM K, et al.Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery[J]. Journal of Controlled Release, 2017, 266: 75-86.
[7] TOMITA Y, ROBINSON P B, TONG R P, et al.Growth and collapse of cavitation bubbles near a curved rigid boundary[J]. Journal of Fluid Mechanics, 2002, 466: 259-283.
[8] 初文华,张阿漫,王诗平.壁面与自由液面联合作用下气泡动态特性试验研究[J].振动与冲击,2013,32(13):112-117.
 CHU Wenhua, ZHANG Aman, WANG Shiping.Experimental study on bubble pulse features under combined action of wall and free surface [J]. Journal of Vibration and Shock ,2013,32(13):112-117.
[9] 王加夏,袁士杰,刘昆,等.近场气泡载荷下柔性结构耦合响应试验研究[J].振动与冲击,2020,39(7):101-107.
 WANG Jiaxia, YUAN Shijie, LIU Kun, et al. Tests for flexible structural coupled response under nearfield bubble loading [J]. Journal of Vibration and Shock ,2020,39(7):101-107.
[10] 王诗平,程晓达,张阿漫,等.气泡与球鼻艏结构相互作用试验研究[J].振动与冲击,2012,31(22):96-100.
 WANG Shiping, CHENG Xiaoda, ZHANG Aman, et al. Tests for interaction of underwater bubbles and a ship bulbous bow [J]. Journal of Vibration and Shock ,2012,31(22):96-100.
[11] CLARKE S  D, FAY S D, WARREN J A, et al.A large scale experimental approach to the measurement of spatially and temporally localised loading from the detonation of shallow-buried explosives[J]. Measurement Science and Technology, 2014, 26(1): 015001.
[12] BARR A D, CLARKE S D,  PETKOVSKI M, et al. Modelling split-Hopkinson pressure bar tests on quartz sand[C]// Proceedings of the IGF workshop. The Annual Postgraduate Research Student Conference. Sheffield: IGF, 2015.
[13] BARR A D, CLARKE S D, RIGBY S E,et al. Finite element modelling of split-Hopkinson pressure bar experiments on sand[C]//16th International Symposium on the Interaction of the Effects of Munitions with Structures. Destin :ISIEMS,2015.
[14] RIGBY S E, FAY S D, CLARKE S D,et al.Measuring spatial pressure distribution from explosives buried in dry Leighton Buzzard sand[J]. International Journal of Impact Engineering, 2016,96:89-104.
[15] YAO, X L, GUO K, CHEN Y Y, et al. A new experimental methodology to assess the wall pressure generated by a high-voltage underwater Spark-generated bubble[J]. Results in Physics, 2019.12:571-574.
[16] CUI X W, YAO X L, CHEN Y Y.A lab-scale experiment approach to the measurement of wall pressure from near-field under water explosions by a Hopkinson bar[J]. Shock and Vibration, 2018(8): 8273469.
 

PDF(2176 KB)

316

Accesses

0

Citation

Detail

段落导航
相关文章

/