液压控制阀的调压精度和工作稳定性依赖于流道内部流场特性的深入研究。基于Schnerr-Sauer空化模型和标准k-ε湍流模型,开展了双U型节流阀内空化流场仿真计算。搭建了可视化试验台,通过高速相机捕捉了透明节流阀内的空化形态流场。通过对双U型节流阀内部流场特性及影响因素的实验和数值分析可知:节流口为主要压降区,由收缩流变为扩散流,是空化发生的主要区域。节流槽出口处的空泡群狭长型,且与出口截面呈一定角度、稳定存在。随着进出口压差的减小,双U型节流阀节流口空化强度进一步缩小,且向节流口萎缩。随着开度的增大,空泡团由团状逐渐收缩为细长状,空化区域及空化强度均呈现先增强再减弱的趋势。此外,一级槽的深度也是影响双U型节流阀内部空化流场的重要因素。一级槽深度减小时,节流槽内阻力增加,压力恢复加快,空化区域及空化强度亦逐渐减弱。随着一级槽深度值减小,高速流范围变小,空化面积亦减小。合理控制双U型节流槽深度,可以有效抑制空化发生程度。
关键词:双U型节流槽;空化;压差;开度;槽口深度
Abstract
The control accuracy and stability of the hydraulic control valve depend on the in-depth study of the flow field characteristics in a throttle valve. Based on the Schnerr-Sauer cavitation model and the standard k-ε turbulence model, the cavitation flow in a U-shaped throttle valve is obtained numerically. A visualization test rig is built, the cavitation flow in the transparent throttle valve is captured by a high-speed camera. The flow field characteristics of oil flow through the orifice of the U-shaped throttle valve and its influencing factors are studied by combining experimental and numerical methods, and the conclusions are as follows: the main pressure drop happens at the throttle orifice, and the flow changes from the contraction flow to the diffusion flow. The throttle orifice is the main area where cavitation occurs. The cavitation bubbles are stable and locate at the outlet of the throttle groove with a certain angle, whose shape are long and narrow. With the decreasing pressure difference, the cavitation intensity in the U-shaped throttle valve is reduced, and the cavitation bubble is shrunk towards the orifice. With the increasing the opening degree, the cavitation flow gradually changes from a mass to a slender shape, and the cavitation intensity increase firstly and then decreases gradually. Furthermore, the depth of the first groove is one of the main factors which affects the cavitation flow in the U-shaped throttle valve. When the groove depth decreases, the resistance in the notch increases. The pressure recovery would be speed up, and the cavitation area and the cavitation intensity will also be weakening. With decreasing depth of the groove, the range of high-speed flow becomes smaller, and the cavitation area also decreases. The decreasing groove depth is an effective method to inhibit the occurrence of cavitation.
Key words:U-shaped throttle valve; cavitation; pressure differential; opening; the depth of the groove
关键词
双U型节流槽 /
空化 /
压差 /
开度 /
槽口深度
{{custom_keyword}} /
Key words
U-shaped throttle valve /
cavitation /
pressure differential /
opening /
the depth of the groove
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Deng Jian, Shao Xueming, Fu Xin, et al. Evaluation of the viscous heating induced jam fault of valve spool by fluid-structure coupled simulations[J]. Energy Conversion and Management, 2009,50(4): 947-954.
DOI:10.1016/j.enconman.2008.12.033
[2] 骆寅,董健,韩岳江, 等. 离心泵空化下的转速瞬变特性试验研究[J]. 振动与冲击, 2021,40(01): 23-28.
Luo Yin, Dong Jian, Han Yuejiang, et al. Tests for rotating speed transient characteristics of centrifugal pump under cavitation [J]. Vibration and shock, 2021,40 (01): 23-28
DOI:10.13465/j.cnki.jvs.2021.01.004
[3] 赵伟国, 朱昌健, 徐泽鑫, 等. 旁通装置控制离心泵空化特性的数值模拟与试验[J]. 振动与冲击, 2021, 40(01): 119-126.
Zhao Weiguo, Zhu Changjian, Xu Zexin, et al. Numerical simulation and tests for cavitation characteristics of centrifugal pump controlled by bypass device [J]. Vibration and shock, 2021, 40 (01): 119-126
DOI:10.13465/j.cnki.jvs.2021.01.016
[4] Xu He, Wang Haihang, Hu Mingyu, et al. Optimal design and experimental research of the anti-cavitation Structure in the Water Hydraulic Relief Valve[J]. Journal of Pressure Vessel Technology, 2018,140(5):051601.
DOI:10.1115/1.4040893
[5] 築地徹浩, 陈卓, 陈晶晶. 轴向柱塞泵内部空化流的可视化分析[J]. 液压与气动, 2015, (2): 1-7.
Tetsuhiro Tsukiji, Chen Zhuo, Chen Jingjing. Visualized Analysis of Cavitation Inside Axial Piston Pump [J].Chinese Hydraulics & Pneumatics, 2015,(2): 1-7.
DOI:10.11832/j.issn.1000-4858.2015.02.001
[6] 孙泽刚, 肖世德, 王德华, 等. 多路阀双U型节流槽结构对气穴的影响及优化[J]. 华中科技大学学报(自然科学版), 2015, 43(4): 38-43.
SUN Zegang, XIAO Shide, WANG Dehua, et al. Influence and Optimization of Double-U-shaped Throting Groove Structure on Cavitation of Multi-way Valve [J].Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015,43(4): 38-43.DOI:10.13245/j.hust.150408
[7] 贺杰,刘秀梅,李贝贝,等. 槽口深度对U型节流阀空化流场的影响[J]. 排灌机械工程学报, 2018, 36(6): 517-523.
HE Jie, LIU Xiumei, LI Beibei, et al. Influence of Groove Depth on Cavitation Flow Field of U-shaped Throttle Valve [J].Journal of Drainage and Irrigation Machinery Engineering, 2018,36(6): 517-523.
DOI:10.3969/j.issn.1674-8530.17.0244
[8] 冀宏, 傅新, 杨华勇,等. 几种典型液压阀口过流面积分析及计算[J]. 机床与液压, 2003, (5): 14-16.
JI Hong, FU Xin, YANG Huayong, et al. Analysis and Calculation on Typical Shape Orifice areas in Hydraulic Valves [J].Machine Tool & Hydraulics, 2003,(5): 14-16.
DOI:10.3969/j.issn.1001-3881.2003.05.005.
[9] Ye Yi, Yin Chen-Bo, Li Xing-Dong, et al. Effects of groove shape of notch on the flow characteristics of spool valve[J]. Energy Conversion and Management, 2014,86: 1091-1101.
DOI: 10.1016/j.enconman.2014.06.081
[10] 朱钰. 液控换向阀内流场及动态特性的数值模拟[J]. 哈尔滨工业大学学报, 2012, 44(5): 133-139.
ZHU Yu. Numerical Simulation of Flow Field and Dynamic Characteristics in Hydraulic Control Directional Valve [J].Journal of Harbin Institute of Technology, 2012, 44(5): 133-139.
DOI:10.11918/j.issn.0367-6234.2012.05.027
[11] 张晓俊, 权龙, 赵斌. 内流式滑阀壁面压力分布可视化计算及试验验证 [J]. 机械工程学报,2016, 52(14):196-203.
ZHANG Xiaojun, QUAN Long, ZHAO Bin. Visualization Calculation and Experimental Verification of Wall Pressure Distribution of Internal Flow Spool Valve [J].Journal of Mechanical Engineering, 2016,52(14) : 196-203.
DOI:10.3901/JME.2016.14.196
[12] Lu Liang, Xie Shuaihu, Yin Yaobao, et al. Experimental and numerical analysis on the surge instability characteristics of the vortex flow produced large vapor cavity in u-shape notch spool valve[J]. International Journal of Heat and Mass Transfer, 2020,146:118882.
DOI:10.1016/j.ijheatmasstransfer.2019.118882
[13] Zhang Jun-hui, Wang Di, Xu Bing, et al. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices[J]. Journal of Zhejiang University-SCIENCE A, 2018,19(6): 417-430.
DOI: 10.1631/jzus.A1700164
[14] 廖义德 刘银水, 黄艳, 等. 二级节流阀抗气蚀性能的实验研究[J]. 流体机械, 2003, 31(6): 1-3.
LIAO Yide, LIU Yinshui, HUANG Yan, et al. Experimental Research on Anti-cavitation Characteristics of Two-step Throttle in Water Hydraulic System [J].Fluid Machinery, 2003,31(6): 1-3.
DOI:10.3969/j.issn.1005-0329.2003.06.001
[15] 偶国富, 饶杰, 章利特, 等. 煤液化高压差调节阀空蚀/冲蚀磨损预测[J]. 摩擦学学报, 2013, 33(2): 155-161.
WU Guofu, RAO Jie, ZHANG Lite, et al. Prediction of Cavitation/Erosion Wear of High Pressure Differential Control Valve for Coal Liquefaction [J].Tribology, 2013,33(2): 155-161.
DOI:10.16078/j.tribology.2013.02.015
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}