考虑铁镓磁特性的换能器输出位移模型与实验

翁玲1,2,高杰聪1,2,黄文美1,2,陈长江1,2,王博文1,2,陈盛华2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 93-99.

PDF(1233 KB)
PDF(1233 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (20) : 93-99.
论文

考虑铁镓磁特性的换能器输出位移模型与实验

  • 翁玲1,2,高杰聪1,2,黄文美1,2,陈长江1,2,王博文1,2,陈盛华2
作者信息 +

Output displacement model and experiment of transducer considering Galfenol magnetic characteristics

  • WENG Ling1,2,GAO Jiecong1,2,HUANG Wenmei1,2,CHEN Changjiang1,2,WANG Bowen1,2,CHEN Shenghua2
Author information +
文章历史 +

摘要

磁致伸缩换能器的换能机制与外加驱动磁场、材料的磁致伸缩特性有不可分割的关系,换能器的输出位移取决于磁致伸缩材料的磁特性、外加磁场、变幅杆等方面。根据等效电路法和平方近似模型,结合材料磁特性和变幅杆振动方程,建立了换能器的输出位移模型,设计了一种无偏置磁场的窗式铁镓磁致伸缩换能器。对铁镓合金材料进行了静态、动态磁特性测量。搭建了实验测试系统,对换能器样机进行了实验测试,完成了模型验证。结果表明:换能器的输出位移幅值理论曲线和实验曲线基本吻合,验证了模型的准确性;在激励电流2A、谐振频率为12.4kHz时,换能器的输出位移幅值为8.22μm。文中建立的模型和所得结论对换能器的优化设计和输出特性分析具有一定的指导意义。
关键词:铁镓合金;换能器;输出位移模型;磁特性测量

Abstract

The energy exchange mechanism of magnetostrictive transducer has an inseparable relationship with the external driving magnetic field and the magnetostrictive characteristics of the material. The output displacement of the transducer depends on the magnetic characteristics of the magnetostrictive material, the external magnetic field, the amplitude transformer and so on. Based on the equivalent circuit method and square approximation model, the displacement output model of the transducer was established by combining the magnetic properties of the material and the vibration equation of the horn, and a window type Galfenol magnetostrictive transducer with unbiased magnetic field was designed. The static and dynamic magnetic characteristics of Galfenol were measured.The experimental test system was built to test the transducer prototype and verify the model.The results show that the theoretical curve of the output displacement amplitude of the transducer is basically consistent with the experimental curve, which verifies the accuracy of the model.When the excitation current is 2A and the resonant frequency is 12.4kHz, the output displacement amplitude is 8.22μm.The model and conclusion are useful for the optimization design and the analysis of the output characteristics of the transducer.
Key words: Galfenol; transducer; output displacement model; magnetic characteristic measurement

关键词

铁镓合金 / 换能器 / 输出位移模型 / 磁特性测量

Key words

Galfenol / transducer / output displacement model / magnetic characteristic measurement

引用本文

导出引用
翁玲1,2,高杰聪1,2,黄文美1,2,陈长江1,2,王博文1,2,陈盛华2. 考虑铁镓磁特性的换能器输出位移模型与实验[J]. 振动与冲击, 2022, 41(20): 93-99
WENG Ling1,2,GAO Jiecong1,2,HUANG Wenmei1,2,CHEN Changjiang1,2,WANG Bowen1,2,CHEN Shenghua2. Output displacement model and experiment of transducer considering Galfenol magnetic characteristics[J]. Journal of Vibration and Shock, 2022, 41(20): 93-99

参考文献

[1] Shanxiang F,Qinjian Z,Huiling Z,et al.The Design of Rare-Earth Giant Magnetostrictive Ultrasonic Transducer and Experimental Study on Its Application of Ultrasonic Surface Strengthening[J].Micromachines, 2018, 9(3):98.
[2] 李鹏阳,刘强,李伟,等.超磁致伸缩超声换能器结构研究[J].振动与冲击,2021,40(11):196-201.
Li Peng-yang,Liu Qiang,Li Wei,et al.Structure of giant magnetostrictive ultrasonic transducer[J].Journal of Vibration and Shock,2021,40(11):196-201.
[3] Xue G,Zhang P,He Z, et al.Design and experimental study of a novel giant magnetostrictive actuator[J]. Journal of Magnetism & Magnetic Materials,2016, 420:185-191.
[4] 周景涛,何忠波,柏果,等.基于柔性铰链的超磁致伸缩旋转驱动器角位移分析[J].振动与冲击,2020,39(18):138-144+180.
Zhou Jingtao, He Zhongbo, Bai Guo, et al.Angular displacement output of a giant magnetostrictive rotary actuator based on a flexible hinge[J].Journal of Vibration and Shock, 2020,39(18):138-144+180.
[5] 黄珊,王博文,赵智忠,等.应用于机械手的磁致伸缩触觉传感器阵列与物体识别[J].电工技术学报,2021, 36(07): 1416-1424.
Huang Shan, Wang Bowen, Zhao Zhizhong, et al. Object Recognition of Magnetostrictive Tactile Sensor Array Applied to Manipulator[J].Transactions of China Electrotechnical Society, 2021,36(07):1416-1424.
[6] 辜棻,杨建华,邓雯,等.PZT和磁致伸缩孤立波传感器的性能研究与分析[J].振动与冲击,2020,39(03):104-110.
Gu Fen,Yang Jian-hua,Deng Wen,et al.Performances of PZT and magnetostrictive solitary wave sensors[J].Journal of Vibration and Shock,2020,39(03):104-110.
[7] Derusova D A ,VP Vavilov,NV Druzhinin,et al.Investigating vibration characteristics of magnetostrictive transducers for air-coupled ultrasonic NDT of composites[J].NDT & E international,2019, 107:1-10.
[8] 杨景卫,曹彪,卢清华.超声-电阻复合焊接方法及界面行为[J].焊接学报,2018,39(03):26-30+130.
Yang Jing-wei, Cao Biao, Lu Qing-hua.Investigation on the interfacial behavior of hybrid ultrasonic resistance welding[J].Transactions of the China Welding Institution,2018,39(03): 26-30+130.
[9] 张超,董世民,刘天明,等.压电陶瓷复合超声换能器径向振动特性的仿真研究[J].振动与冲击,2020,39(21): 217-225+240.
Zhang Chao,Dong Shi-min, Liu Tian-ming,et al. Simulation of radial vibration characteristics of piezoelectric ceramic composite ultrasonic transducer[J]. Journal of Vibration and Shock,2020,39(21): 217-225+240.
[10] 翁玲,常振,孙英,等.不同磁致伸缩材料的高频磁能损耗分析与实验研究[J].电工技术学报,2020,35(10): 2079-2087.
Weng Ling, Chang Zhen, Sun Ying,et al. Analysis and Experimental Study on High Frequency Magnetostrictive Energy Loss of Different Magnetostrictive Materials[J]. Transactions of China Electrotechnical Society,2020,35(10): 2079-2087.
[11] 黄文美,郜春艳,王博文,等.超磁致伸缩材料高频磁能损耗特性测试与分析[J].农业机械学报,2019,50(02):420-426.
Huang Wen-mei,Gao Chun-yan,Wang Bo-wen,et al.Test and Analysis of High Frequency Magnetic Energy Losses Characteristics for Giant Magnetostrictive Materials[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(2):420-426.
[12] Zhu Z W, Guo C, Wang H L, et al.Stochastic Nonlinear Dynamic Characteristics and Control of Fe-Ga Cantilever Nanobeam with Nonlocal Effect[J].Journal of Superconductivity and Novel Magnetism,2017, 30(6):1685-1689.
[13] 薛丰,王博文,赵智忠,等.磁致伸缩触觉传感器的传感模型与特性[J].仪器仪表学报,2020,41(12):103-110.
Xue Feng,Wang Bo-wen, Zhao Zhi-zhong,et al.Sensing
model and characteristics of magnetostrictive tactile sensor[J].Chinese Journal of Scientific Instrument,2020,41(12):103-110.
[14] H Zhou,Zhang J,Feng P,et al.Investigations on a mathematical model for optimum impedance compensation of a giant magnetostrictive ultrasonic transducer and its resonance characteristics[J].Ultrasonics, 2020, 110.
[15] Zhi L,Zhang X,Gu G Y, et al.A Comprehensive Dynamic Model for Magnetostrictive Actuators Considering Different Input Frequencies With Mechanical Loads[J].IEEE Transactions on Industrial Informatics,2016,12(3):980-990.
[16] Li Y, Huang W, Wang B,et al.High-Frequency Output Characteristics of Giant Magnetostrictive Transducer[J]. IEEE Transactions on Magnetics,2019,55(6):1-5.
[17] Pan Y,Mo X,Li Y,et al.A magnetostrictive underwater transducer directly driven by Iron-Gallium alloy (Galfenol) without bias magnetic field[C]// International Conference on OCEANS'15 MTS/IEEE Washington. Washington D.C. :IEEE, 2016.
[18] Yan B,Zhang C,Li L,et al.Research on Dynamic Characteristic of High-Power Magnetostrictive Transducer in high frequency application[C]//5th International Conference on Advanced Design and Manufacturing Engineering.2015.
[19] Chakrabarti S,Dapino M J.Nonlinear finite element model for 3D Galfenol systems[J].Smart Material Structures,2011,20(10):105034.
[20] Huang W,Li Y,Weng L,et al.Multifield Coupling Model With Dynamic Losses for Giant Magnetostrictive Transducer[J].IEEE Transactions on Applied Superconductivity,2016,26(4):1-5.
[21] Braghin F,Cinquemani S,Resta F.A model of magnetostrictive actuators for active vibration control[J]. Sensors & Actuators A Physical,2011,165(2):342-350.
[22] 周福洪.水声换能器及基阵[M].国防工业出版社, 1984.
Zhou Fu-hong.Underwater acoustic transducer and array[M].National Defence Industry Press,1984.
[23] Wang T, Zhou Y.Nonlinear dynamic model with multi-fields coupling effects for giant magnetostrictive actuators[J].International Journal of Solids and Structures,2013,50(19):2970-2979.
[24] 林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社, 1987.
Lin Zhong-mao.Principle and design of ultrasonic horn[M].Beijing: Science Press,1987.
[25] 陶孟仑,陈定方,卢全国,等.超磁致伸缩材料动态涡流损耗模型及试验分析[J].机械工程学报,2012,48(13): 146-151.
Tao Meng-lun, Chen Ding-fang, Lu Quan-guo,et al. Eddy Current Losses of Giant Magnetostrictors: Modeling and Experimental Analysis[J]. Journal of Mechanical Engineering, 2012,48(13): 146-151.

PDF(1233 KB)

1032

Accesses

0

Citation

Detail

段落导航
相关文章

/