基于振动声调制信号协整分析的螺栓预紧状态识别

张俊树1,李丹1,任伟新2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (21) : 1-6.

PDF(1345 KB)
PDF(1345 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (21) : 1-6.
论文

基于振动声调制信号协整分析的螺栓预紧状态识别

  • 张俊树1,李丹1,任伟新2
作者信息 +

Identification of bolt pre-tightening state based on cointegration analysis of vibro-acoustic modulation signals

  • ZHANG Junshu1, LI Dan1, REN Weixin2
Author information +
文章历史 +

摘要

振动声调制(vibro-acoustic modulation ,VAM)利用低频振动和高频信号在损伤处相互作用所产生的非线性旁瓣信号进行结构损伤识别。在实际工程中,边界条件往往会影响被监测结构,干扰旁瓣的识别,导致损伤状况的误判。本文针对边界条件影响下的螺栓连接状态监测问题,提出了基于VAM信号协整分析的螺栓预紧状态识别方法。首先提取不同边界固定力下旁瓣信号的幅值作为协整变量,然后根据残差序列判断螺栓的预紧状态,建立具有鲁棒性的螺栓预紧力状态量化指标。实验结果表明,协整分析可以消除边界条件对VAM的影响,能够很好地表征螺栓的状态;协整残差的均方根(root mean square,RMS)值作为量化指标,能够有效地识别螺栓预紧力状态。
关键词:振动声调制(VAM);螺栓预紧力;边界条件;协整分析;残差

Abstract

Vibro-acoustic modulation (VAM) can identify the structural damage using the nonlinear side-band signals induced by the interaction of low-frequency vibration and high-frequency waves. However, the side-band signals are susceptible to the boundary conditions, resulting in false diagnosis in practice. In light of the bolt connection monitoring under the influence of boundary conditions, a method based on cointegration analysis is proposed. Firstly, the amplitudes of side-band signals under different boundary fixing preloading of bolts are extracted as the cointegration variable. By performing the cointegration analysis, the bolt looseness can be identified. A robust preloading state index of bolt connections is then proposed according to the residual. The experimental results have shown that the proposed method can isolate damage-sensitive features from boundary conditions to detect the bolt looseness state, and the bolt preloading can be quantified accordingly by root mean square (RMS) value of the residual.
Key words: vibro-acoustic modulation (VAM); bolt preloading; boundary conditions; cointegration analysis; residual

关键词

振动声调制(VAM) / 螺栓预紧力 / 边界条件 / 协整分析 / 残差

Key words

vibro-acoustic modulation (VAM) / bolt preloading / boundary conditions / cointegration analysis / residual

引用本文

导出引用
张俊树1,李丹1,任伟新2. 基于振动声调制信号协整分析的螺栓预紧状态识别[J]. 振动与冲击, 2022, 41(21): 1-6
ZHANG Junshu1, LI Dan1, REN Weixin2. Identification of bolt pre-tightening state based on cointegration analysis of vibro-acoustic modulation signals[J]. Journal of Vibration and Shock, 2022, 41(21): 1-6

参考文献

[1]  Pieczonka L, Staszewski W J, Uhl T. Investigation of nonlinear vibro-acoustic wave modulation mechanisms in composite laminates [J]. Key Engineering Materials, 2013, 569-570: 96-102.
[2]  Carcione A, Blanloeuil P, Rose L R F, et al. Modulated high frequency excitation approach to nonlinear ultrasonic NDT [J]. Journal of Sound and Vibration, 2019, 446: 238-248.
[3]  Kim S, Adams D E, Sohn H, et al. Crack detection technique for operating wind turbine blades using vibro-acoustic modulation [J]. Structural Health Monitoring, 2014, 13(6): 660-670.
[4]  Meyer J J, Adams D E. Using impact modulation to quantify nonlinearities associated with bolt loosening with applications to satellite structures [J]. Mechanical Systems and Signal Processing, 2019, 116: 787-795.
[5]  Klepka A, Staszewski W J, Di Maio D, et al. Impact damage detection in composite chiral sandwich panels using nonlinear vibro-acoustic modulations [J]. Smart Materials and Structures, 2013, 22(8), 084011.
[6]  Zhao N, Huo L, Song G. A nonlinear ultrasonic method for real-time bolt looseness monitoring using PZT transducer–enabled vibro-acoustic modulation [J]. Journal of Intelligent Material Systems and Structures, 2019, 31(3): 364-376.
[7]  Liu B, Yang J, Gang T. Analysis of sound and vibration interaction on a crack and its use in high-frequency parameter selection for vibro-acoustic modulation testing [J]. Mechanical Systems and Signal Processing, 2020, 143, 106835.
[8]  Polimeno U, Meo M. Understanding the effect of boundary conditions on damage identification process when using non-linear elastic wave spectroscopy methods [J]. International Journal of Non-Linear Mechanics, 2008, 43(3): 187-193.
[9]  Engle R F, Budoya D, Almeida V, et al. Co-Integration and error correction: Representation, Estimation, and Testing [J]. Econometrica, 1987, 55(2): 251-276.
[10]  Cross E J, Worden K, Chen Q. Cointegration: a novel approach for the removal of environmental trends in structural health monitoring data [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467(2133): 2712-2732.
[11]  Cross E J, Worden K. Approaches to nonlinear cointegration with a view towards applications in SHM [J]. Journal of Physics: Conference Series, 2011, 305, 012069.
[12]  Dao P B, Staszewski W J. Lamb wave based structural damage detection using cointegration and fractal signal processing [J]. Mechanical Systems and Signal Processing, 2014, 49(1-2): 285-301.
[13]  刁延松, 曹亚东, 孙玉婷. 环境变化下基于AR模型系数和协整的海洋平台结构损伤识别[J]. 工程力学, 2017, 34(02): 179-188.
Diao Yansong, Cao Yadong, Sun Yuting. Structural damage identification based on AR model coefficients and cointegration for offshore platform under environmental variations [J]. Engineering Mechanics, 2017, 34(02): 179-188.
[14]  Liang Y, Li D, Song G, et al. Frequency Co-integration-based damage detection for bridges under the influence of environmental temperature variation [J]. Measurement, 2018, 125: 163-175.
[15]  李秀娟, 屈文忠, 肖黎. 压电阻抗损伤识别温度影响的协整消除方法研究[J]. 振动与冲击, 2019, 38(18): 128-134.
Li Xiujuan, Qu Wenzhong, Xiao Li. Cointegration approach for the temperature effect compensation in EMI damage detection [J]. Journal of Vibration and Shock, 2019, 38(18): 128-134.
[16]  揭小落, 肖黎, 屈文忠. 载荷影响下的机电阻抗协整结构损伤识别方法[J]. 振动、测试与诊断, 2020, 40(03): 526-534+627.
Jie Xiaoluo, Xiao Li, Qu Wenzhong. Structural damage identification under load based on electromechanical impedance co-integration [J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(03): 526-534+627.
[17]  Wang F, Song G. Monitoring of multi-bolt connection looseness using a novel vibro-acoustic method [J]. Nonlinear Dynamics, 2020, 100(1): 243-254.
[18]  Klepka A, Staszewski W J, Dziedziech K, et al. Non-linear vibro-acoustic wave modulations - Analysis of different types of low-frequency excitation [J]. Key Engineering Materials, 2013, 569-570: 924-931.
[19]  Karve P, Miele S, Neal K, et al. Vibro-acoustic modulation and data fusion for localizing alkali–silica reaction–induced damage in concrete [J]. Structural Health Monitoring, 2020, 19(6): 1905-1923.
[20]  Pieczonka L, Ukowski P, Klepka A, et al. Impact damage detection in light composite sandwich panels using piezo-based nonlinear vibro-acoustic modulations [J]. Smart Materials and Structures, 2014, 23(10), 105021.
[21]  Liu B, Luo Z, Gang T. Influence of low-frequency parameter changes on nonlinear vibro-acoustic wave modulations used for crack detection [J]. Structural Health Monitoring, 2017, 17(2): 218-226.
[22]  Dziedziech K, Pieczonka L, Adamczyk M, et al. Efficient swept sine chirp excitation in the non-linear vibro-acoustic wave modulation technique used for damage detection [J]. Structural Health Monitoring, 2017, 17(3): 565-576.
[23]  刘斌. 接触界面振动声调制行为及缺陷检测方法研究[D]; 哈尔滨工业大学, 2015.
Liu Bin. Research on vibro-acoustic modulation behavior of contact interface and defect detection method[D]. Harbin Institute of Technology, 2015.

PDF(1345 KB)

Accesses

Citation

Detail

段落导航
相关文章

/