一类厚度误差影响下单边微谐振器模态耦合动力学研究

冯晶晶1,2,王冲1,2,郝淑英1,2,胡文华1,2,吴梦玉1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (21) : 325-332.

PDF(2536 KB)
PDF(2536 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (21) : 325-332.
论文

一类厚度误差影响下单边微谐振器模态耦合动力学研究

  • 冯晶晶1,2,王冲1,2,郝淑英1,2,胡文华1,2,吴梦玉1,2
作者信息 +

Modal coupled dynamics of unilateral micro-resonator under influence of thickness error

  • FENG Jingjing1,2, WANG Chong1,2, HAO Shuying1,2, HU Wenhua1,2, WU Mengyu1,2
Author information +
文章历史 +

摘要

通过表面加工技术制造的微谐振器不可避免地存在加工误差,本文引入了用于描述微梁上下表面变化的截面参数,并基于欧拉伯努利梁模型,研究了厚度形态误差下微梁谐振器模态间的耦合振动。应用Galerkin离散和多尺度方法获得了相应的非线性耦合方程,得到了不同截面参数误差下产生耦合振动的临界阈值,对频率响应曲线理论解进行了数值验证,表明了模态耦合可以有效地抑制微梁中点位移;同时截面参数的减小会促进系统内部的模态耦合,更大程度的抑制了微梁中点位移并且拓宽了系统的频率响应带宽。该研究中所分析的不同截面参数下系统模态耦合共振问题对于提升微谐振器系统稳定性和额定电压均具有潜在的应用价值。
关键词:微谐振器;截面参数;多尺度法;模态耦合振动

Abstract

Microresonators manufactured by surface processing technology inevitably have processing errors, this article introduces the section parameters used to describe the changes in the upper and lower surfaces of the microbeam, based on the Euler Bernoulli beam model, the coupling vibration between the modes of the microbeam resonator under the thickness shape error is studied. The corresponding nonlinear coupling equations are obtained by Galerkin discretization and multiscale method, and the critical thresholds of coupling vibration under different section parameters are obtained. The coincidence between the theoretical solution and the numerical solution of the frequency response curve verifies that the modal coupling can effectively suppress the midpoint displacement of the micro beam; the reduction of the section parameters will promote the modal coupling within the system, restrain the midpoint displacement of the microbeam to a greater extent, and broaden the frequency response bandwidth of the system. The modal coupling resonance under different section parameters analyzed in this study has potential application value for improving the stability and rated voltage of microresonator system.
Key words: microresonator; section parameters; multiscale method; modal coupling vibration

关键词

微谐振器 / 截面参数 / 多尺度法 / 模态耦合振动

Key words

microresonator / section parameters / multiscale method / modal coupling vibration

引用本文

导出引用
冯晶晶1,2,王冲1,2,郝淑英1,2,胡文华1,2,吴梦玉1,2. 一类厚度误差影响下单边微谐振器模态耦合动力学研究[J]. 振动与冲击, 2022, 41(21): 325-332
FENG Jingjing1,2, WANG Chong1,2, HAO Shuying1,2, HU Wenhua1,2, WU Mengyu1,2. Modal coupled dynamics of unilateral micro-resonator under influence of thickness error[J]. Journal of Vibration and Shock, 2022, 41(21): 325-332

参考文献

[1] 孟光,张文明.微机电系统动力学[M].科学出版社,2018.
Meng G, Zhang W M. Micro-electro-mechanical system dynamics[M]. Science Press, 2018.
[2] Joglekar M, Pawaskar D. Shape optimization of electrostatically actuated microbeams for extending static and dynamic operating ranges[J]. Structural and Multidisciplinary Optimization, 2012, 46(6): 871-890.
[3] Zhang S, Zhang W M, Peng Z K, Meng G. Dynamic characteristics of electrostatically actuated shape optimized variable geometry microbeam[J]. Shock and Vibration, 2015, 867171.
[4] F J J, Liu C,Zhang W,Hao S Y. Static and Dynamic Mechanical Behaviors of Electrostatic MEMS Resonator with Surface Processing Error[J]. Micromachines,2018,9(1):34.
[5] Demirci M U, Nguyen C C. Mechanically Corner-Coupled Square Microresonator Array for Reduced Series Motional Resistance[J]. Journal of Microelectromechanical Systems,2007, 15(6):1419 – 1436.
[6] Alfosail K F, Younis M I. Theoretical and Experimental Investigation of Two-to-One Internal Resonance in MEMS Arch Resonators[J]. Journal of Computational and Nonlinear Dynamics,2019,14(1),4041771.
[7] Younis M I, Abdel-Rahman E M, Nayfeh A H. A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems, 2003, 12(5): 672–680.
[8] Li L, Zhang Q C, Wang W, Han J X. Nonlinear coupled vibration of electrostatically actuated clamped-clamped microbeams under higher-order modes excitation[J]. Nonlinear Dynamics, 2017, 90(3): 1593-1606.
[9] Wang Z,Ren J T. Three-to-One Internal Resonance in MEMS Arch Resonators[J].Sensors,2019,19(8):1888.
[10] Ouakad H, Sedighi M H. One-to-One and Three-to-One Internal Resonances in MEMS Shallow Arches[J]. Journal of Computational and Nonlinear Dynamics,2017,12(5),4036815.
[11] Praveen K,Mandar M.Characterisation of the internal resonances of a clamped-clamped beam MEMS resonator[J]. Microsystem Technologies, 2020,26:1987–2003.
[12] 尚慧琳,董章辉,刘 海,刘智群.一类双边电容式微谐振器吸合不稳定性及其时滞速度反馈控制[J].振动与冲击,2021,40(7):237-243.
Shang H L,Dong Z H,Liu H,Liu Z Q. Pull in instability and time delay velocity feedback control of a class of bilateral capacitive micro resonators [J]. Vibration and shock, 2021,40 (7): 237-243
[13] 王洪礼,张琪昌.非线性动力学理论及其应用[M].天津科学技术出版社,2002.
Wang H L,Zhang Q C. Nonlinear dynamics theory and its application [M]. Tianjin Science and Technology Press, 2002.
[14] Caruntu D,Martinez I,Knecht W M. Parametric resonance voltage response of electrostatically actuated Micro-Electro-Mechanical Systems cantilever resonators[J]. Journal of Sound and Vibration,2015,362(5):203-213.
[15] Kuang J H, Chen C J. Dynamic characteristics of shaped microactuators solved using the differential quadrature method[J]. Journal of Micromechanics and Microengineering, 2004, 14(4): 647-655.
[16] 崔 灿,蒋 晗,李映辉.变截面梁横向振动半解析法[J].振动与冲击,2012,31(34):86-88.
Cui C, Jiang H, Li Y H. Semi analytical method for transverse vibration of variable section beams [J]. Vibration and impact, 2012,31 (34): 86-88.

PDF(2536 KB)

349

Accesses

0

Citation

Detail

段落导航
相关文章

/