地震作用下不同形式深水桥墩流固耦合效应研究

周敉1,江坤1,2,李久龙3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (21) : 7-18.

PDF(4945 KB)
PDF(4945 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (21) : 7-18.
论文

地震作用下不同形式深水桥墩流固耦合效应研究

  • 周敉1,江坤1,2,李久龙3
作者信息 +

Fluid-solid coupling effect of different forms of deep-water piers under earthquake

  • ZHOU Mi1, JIANG Kun1,2, LI Jiulong3
Author information +
文章历史 +

摘要

地震作用下,水-结构耦合效应使结构浸水部分产生动水压力。为了研究动水效应对不同形式桥墩的地震响应影响和动水压力在桥墩上的分布规律。以某大型圆形桥墩、矩形桥墩及高桩承台群桩基础为例,采用基于势流体的有限单元法,建立流固耦合数值计算模型,进行了不同水深工况下及不同地震波输入下的自振特性分析、地震响应分析及动水压力分析。结果表明:水深增加会使三种形式桥墩的自振频率降低,内力响应增大;矩形桥墩在地震输入方向上的迎水面为平面,相比圆形桥墩与水的相互作用更明显,会产生更大的动水压力;达到一定水深时,圆形桥墩和矩形桥墩上的动水压力沿墩高先增大后减小。且迎水面中心位置处动水压力最大,向两侧逐渐减小;水下高桩承台群桩基础的中桩所受的地震响应及动水压力均比边桩小。水深淹没承台后,承台承受大部分动水压力,桩基上动水总压力作用点在0.6倍的桩长位置处。
关键词:深水桥墩;势流体单元;流固耦合;自振特性;地震响应;动水压力

Abstract

Under the action of earthquake, the water-structure coupling effect makes the submerged part of the structure produce hydrodynamic pressure. In order to study the influence of hydrodynamic effect on the seismic response of different types of piers and the distribution law of hydrodynamic pressure on piers. Taking large circular pier, rectangular pier and elevated pile-cap foundation as examples, using the finite element method based on potential fluid, the fluid-solid coupling numerical calculation models of three types of piers are established, and the natural vibration characteristics, seismic response and hydrodynamic pressure are analyzed under different water depths and different seismic wave inputs. The results show that: With the increase of water depth, the natural frequency of the three types of piers will decrease and the internal force response will increase; The water-facing surface of rectangular pier in the direction of earthquake input is a plane, which has more obvious interaction with water than circular pier, and will produce greater hydrodynamic pressure; When a certain water depth is reached, the hydrodynamic pressure on circular pier and rectangular pier first increases and then decreases along the pier height. Moreover, the hydrodynamic pressure is maximum at the center of the water front and decreases gradually to both sides. The seismic response and hydrodynamic pressure of the middle piles of underwater elevated pile-cap foundation are smaller than those of the side piles. After the water depth submerges the cap, the cap bears most of the hydrodynamic pressure, and the action point of the total hydrodynamic pressure on the pile foundation is 0.6 times of the pile length.
Key words: deep-water pier; potential-fluid element; fluid-solid coupling; natural vibration characteristics; seismic response; hydrodynamic pressure

关键词

深水桥墩 / 势流体单元 / 流固耦合 / 自振特性 / 地震响应 / 动水压力

Key words

deep-water pier / potential-fluid element / fluid-solid coupling / natural vibration characteristics / seismic response / hydrodynamic pressure

引用本文

导出引用
周敉1,江坤1,2,李久龙3. 地震作用下不同形式深水桥墩流固耦合效应研究[J]. 振动与冲击, 2022, 41(21): 7-18
ZHOU Mi1, JIANG Kun1,2, LI Jiulong3. Fluid-solid coupling effect of different forms of deep-water piers under earthquake[J]. Journal of Vibration and Shock, 2022, 41(21): 7-18

参考文献

[1] 黄信.水-桥墩动力相互作用机理及深水桥梁非线性地震响应研究[D].天津:天津大学,2012.
Huang Xin. Mechanism of Water-Bridge Pier Dynamic Interaction and Nonlinear Seismic Responses of Bridges in Deep Water[D]. Tianjin: Tianjin University, 2012.
[2] JIANG H, WANG B, BAI X, et al. Simplified Expression of Hydrodynamic Pressure on Deep-Water Cylindrical Bridge Piers during Earthquakes[J]. Journal of Bridge Engineering. 2017, 22(6): 4017014.
[3] YANG W, LI Q, YEH H. Calculation Method of Hydrodynamic Forces on Circular Piers during Earthquake[J]. Journal of Bridge Engineering. 2017, 22(11): 0401709311.
[4] 张洁,朱东生,张永水,等.考虑动水压力作用的深水桥墩地震响应分析[J].重庆交通大学学报(自然科学版),2012,31(3):357-361.
Zhang Jie, Zhu Dong-sheng, Zhang Yong-shui. Seismic Response Analysis of Deep-Water Bridge Piers Considering Hydrodynamic Pressure [J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2012, 31, 357-361.
[5] 庄卫林,刘振宇,蒋劲松.汶川大地震公路桥梁震害分析及对策[J].岩石力学与工程学报,2009,28(07):1377-1387.
Zhuang Wei-lin, Liu Zhen-yu, Jiang Jin-song, Earthquake-Induced Damage Analysis of Highway Bridges in Wenchuan Earthquake and Countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(07): 1377-1387.
[6] 王丕光,黄义铭,赵密,等.椭圆形柱体地震动水压力的简化分析方法.[J].震灾防御技术,2019,14(01):24-34.
Wang Pi-guang, Huang Yi-ming, Zhao Mi., et al. The Simplified Method for Earthquake Induced Hydrodynamic Pressure on Elliptical Cylinder[J]. Technology for Earthquake Disaster Prevention. 2019, 14(01):24-34.
[7] WANG P, ZHAO M, DU X. Analytical Solution and Simplified Formula Earthquake Induced Hydrodynamic Pressure on Elliptical Hollow Cylinders in Water[J]. Ocean Engineering, 2018, 148: 149-160.
[8] WANG P, ZHAO M, DU X. Simplified Formula for Earthquake-induced Hydrodynamic Pressure on Round-Ended and Rectangular Cylinders Surrounded by Water[J]. Journal of Engineering, 2019, 145(2): 04018137.
[9] 杜修力,赵娟,赵密.大直径深水圆柱结构动水压力的时域算法[J].土木工程学报,2012,45(S1):316-320.
Du Xiu-li, Zhao Juan, Zhao Mi. A Time-Domain Method for The Hydrodynamic Pressure on Deep-Water Cylindrical Structure with Large Diameter[J]. China Civil Engineering Journal, 2012,45(S1):316-320.
[10] WANG P, CHANG Y, ZHAO M, et al. Earthquake and Wave Analysis of Circular Cylinder Considering Water-Structure-Soil Interaction[J]. Advances in Civil Engineering, 2020, 2020: 4271378.
[11] ZHENG S, ZHANG Y, LIU Y, et al. Wave Radiation from Multiple Cylinders of Arbitrary Cross Sections[J]. Ocean Engineering, 2019, 184, 11-22.
[12] ZHANG J, WEI K, QIN S. An Efficient Numerical Model for Hydrodynamic Added Mass of Immersed Column with Arbitrary Cross-Section[J]. Ocean Engineering. 2019, 187: 106192.
[13] WANG P, MI Z, LI H, et al. An Accurate and Efficient Time-Domain Model for Simulating Water-Cylinder Dynamic Interaction During Earthquake[J]. Engineering Structures, 2018, 166: 263-273.
[14] 江辉,白晓宇,黄磊等.波浪、海流环境中跨海桥梁深水桥墩的地震响应特性[J].铁道学报,2019,41(03):117-127.
Jiang Hui, Bai Xiao-yu, Huang Lei, et al. Seismic Response Characteristics of Deep-Water Piers of Sea-Crossing Bridges in Wave-Current Environment[J]. Journal of the China Railway Society, 2019, 41(03): 117-127.
[15] Saini S S, Bettess P, Zienkiewicz O C. Coupled Hydrodynamic Response of Concrete Gravity Dams using Finite and Infinite Elements [J]. Earthquake Engineering & Structural Dynamics, 1978, 6(4): 363-374.
[16] 江辉,楚芹,王宝喜.近、远场地震下深水桥墩动力响应特性对比研究[J].振动与冲击,2014,33(22):58-66.
Jiang Hui, Chu Qin, Wang Bao-xi. Comparative study on The Dynamic Response Feature of Bridge Pier in Deep-Water Exited by Near-Fault and Far-Field Earthquake Ground Motions[J]. Journal of Vibration and Shock, 2014, 33(22): 58-66.
[17]  Bathe K J, Zhang H, Ji S. Finite Element Analysis of Fluid Flows Fully Coupled with Structural Interactions[J]. Computers and Structures, 1999, 72(1–3): 1–16.
[18] Bouaanani B, Lu F Y. Assessment of Potential-Based Fluid Finite Elements for Seismic Analysis of Dam-Reservoir Systems[J]. Computers and Structures, 2009, 87(3/4): 206-224
[19] DENG Y, GUO Q, XU L. Effects of Pounding and Fluid-Structure Interaction on Seismic Response of Long-Span Deep-Water Bridge with High Hollow Piers[J]. Arabian Journal for Science and Engineering, 2019,44(5): 4453-4465.
[20] ZHANG J, WEI K, PANG Y, et al. Numerical Investigation into Hydrodynamic Effects on The Seismic Response of Complex Hollow Bridge Pier Submerged in Reservoir: Case Study[J]. Journal of Bridge Engineering. 2019, 24(2): 2018016.
[21] PANG Y, CAI L, HE W, et al. Seismic Assessment of Deep Water Bridges in Reservoir Considering Hydrodynamic Effects Using Endurance Time Analysis[J]. Ocean Engineering, 2020, 198: 106846.
[22] WEI K, YUAN W. Experimental and Numerical Assessment of The Three-Dimensional Modal Dynamic Response of Bridge Pile Foundations Submerged in Water [J]. Journal of Bridge Engineering, 2013, 18: 1032-1041.
[23] 吴安杰,杨万理,赵雷.开孔圆形截面空心桥墩水动力研究[J].防灾减灾工程学报,2017,37(5):725-731.
WU An-jie, YANG Wan-li, ZHAO Lei. Study on Hydrodynamic Characteristics of Circular Hollow Pier with Holes[J]. Journal of Disaster Prevention and Mitigation, 2017, 37(5): 725-731.
[24] JTG/T 2231-01-2020,公路桥梁抗震设计规范[S].北京:人民交通出版社,2020.
[25] 日本道路协会.道路桥示方书•同解说,V耐震设计编[S].东京:日本丸善出版社,2012.
[26] European Committee for Standardization. Eurocode 8: Design of Structures for Earthquake Resistance-Part 2: Bridge[S]. 2005.
[27] Everstine G C. A Symmetric Potential Formulation for Fluid-Structure Interaction. Journal of Sound & Vibration, 1981, 79(1): 157-160.
[28] 魏凯.地震作用下桥梁深水基础流固耦合效应及抗震方法研究[D].上海:同济大学,2013.
Wei Kai. Earthquake Induced Fluid-Structure Effects and Seismic Response Analyses of Deep-water Foundations for Bridge[D], Shanghai: Tongji University, 2013.
[29] 江辉,王宝喜,白晓宇等.近、远场强震下深水桥墩的非线性动力响应特性[J].华中科技大学学报(自然科学版),2017,45(8):170-816.
Jiang Hui, Wang Bao-xi, Bai Xiao-yu, et al. Nonlinear dynamic response character of deep-water bridge piers excited by strong near-fault and far-field earthquakes[J]. Journal of HuaZhong University of Technology (Natural Science Edition), 2017, 45(8):170-816.
[30] Kouroussis G, Verlinden O, Conti C. Finite-Dynamic Model for Infinite Media: Corrected Solution of Viscous Boundary Efficiency. Journal of Engineering Mechanics-ASCE, 2011, 137(7): 509-511.
[31] 杨吉新,秦延飞,刘素云等.水中结构振动特性的实验研究[J].武汉理工大学学报(交通科学与工程版),2010,34(6):1104-1107.
Yang Ji-xin, Qin Yan-fei, Liu Su-yun. Experimental Study on Vibration Characteristics of Structures in Water [J]. Journal of Wuhan University of Technology (Traffic Science and Engineering Edition), 2010, 06, 1104-1107.
[32] 李玉龙.地震与波浪联合作用下深水桥墩动力响应分析[D].天津:天津大学,2012.
LI Yu-Long. Dynamic Response Analysis of Deep-Water Piers Subjected to Earthquake and Wave Loadings[D]. Tianjin: Tianjin University, 2012.
[33] 王丕光.地震和波浪作用下水-桥梁下部结构相互作用研究[D].北京:北京工业大学,2016.
WANG Pi-Guang. Study on water-substructure of bridge interaction under earthquake action and wave action[D]. Beijing: Beijing University of Technology, 2016.

PDF(4945 KB)

Accesses

Citation

Detail

段落导航
相关文章

/