小肠环境下自推进胶囊内窥镜的非线性动力学行为研究

朱佳鹏,廖茂林,朱志强,曾子衿,李智

振动与冲击 ›› 2022, Vol. 41 ›› Issue (21) : 86-96.

PDF(4635 KB)
PDF(4635 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (21) : 86-96.
论文

小肠环境下自推进胶囊内窥镜的非线性动力学行为研究

  • 朱佳鹏,廖茂林,朱志强,曾子衿,李智
作者信息 +

Nonlinear dynamic behavior of self-propelled capsule endoscope in small intestine environment

  • ZHU Jiapeng, LIAO Maolin, ZHU Zhiqiang, ZENG Zijin, LI Zhi
Author information +
文章历史 +

摘要

为优化自推进胶囊在小肠内的移动速度,提升胶囊内窥镜的检测效率,通过建立激振胶囊的动力学模型、小肠能动性与阻力模型,整合得到小肠-胶囊耦合动力学模型。通过数值模拟分析了胶囊的激励频率与振幅2项激振参数以及胶囊内部激振体的质量与刚度2项结构参数对小肠-胶囊模型的非线性动力学行为演变规律的影响。研究发现,激振参数和结构参数的调整将不断改变胶囊的振动状态,从而对胶囊在小肠内的自推进速度以及相对小肠蠕动方向产生显著影响。当胶囊的平均移动速度达到最大时,其振动状态表现为单周期单次碰撞;当胶囊相对小肠蠕动方向发生反方向移动时,对应的激振频率与激振体质量均较小,此时胶囊的振动状态为单周期双碰撞。此外,激振频率、激振体质量或刚度过大时都会导致激振驱动失效,此时胶囊仅依靠肠道蠕动推进。
关键词:动力学;非线性;小肠环境;激振胶囊;自推进

Abstract

In order to optimize the speed of self-propelled capsule in the small intestine and improve the detection efficiency of capsule endoscope, the small intestine-capsule dynamic model is integrated by coupling the dynamic model of excitation capsule with the small intestinal motility and resistance model. Through numerical simulation, the effects of excitation frequency and amplitude of the capsule, and the mass and stiffness of the inner oscillator in the capsule are analyzed. It is found that the adjustment of excitation parameters and structural parameters will change the vibration state of the capsule, which will have a significant impact on the self-propulsion speed and moving direction of the capsule in the small intestine. When the average moving speed of the capsule reaches the maximum, its vibration state is single period with single impact; when the capsule moves in the opposite direction relative to the peristalsis direction of the small intestine, the corresponding excitation frequency and the mass of the inner oscillator are small. At this time, the vibration state of the capsule is single period with double impacts. In addition, when the excitation frequency, the mass and the stiffness of the inner oscillator is too large, the excitation drive will fail, and the capsule only moves depending on intestinal peristalsis.
Key words: Dynamics; nonlinearity; intestinal environment; vibro-impact capsule; self-propulsion

关键词

动力学 / 非线性 / 小肠环境 / 激振胶囊 / 自推进

Key words

Dynamics / nonlinearity / intestinal environment / vibro-impact capsule / self-propulsion

引用本文

导出引用
朱佳鹏,廖茂林,朱志强,曾子衿,李智. 小肠环境下自推进胶囊内窥镜的非线性动力学行为研究[J]. 振动与冲击, 2022, 41(21): 86-96
ZHU Jiapeng, LIAO Maolin, ZHU Zhiqiang, ZENG Zijin, LI Zhi. Nonlinear dynamic behavior of self-propelled capsule endoscope in small intestine environment[J]. Journal of Vibration and Shock, 2022, 41(21): 86-96

参考文献

[1] Wang J, Wang Z, Leach M, et al. RF characteristics of wireless capsule endoscopy in human body [J]. Journal of Central South University, 2016, 23 (5): 1198-1207.
[2] 迟明路,刘荣升,郑华栋,等.主被动式肠道微型机器人研究进展[J].机电工程技术,2021,50(4):25-29.
CHI Ming-lu, LIU Rong-sheng, ZHENG Hua-dong, et al. Research Progress of Active-Passive Intestinal Microrobot [J]. Mechatronic Engineering Technology, 2021, 50(4): 25-29.
[3] Liu Y, Wiercigroch M, Pavlovskaia E, et al. Modelling of a vibro-impact capsule system [J]. International Journal of Mechanical Sciences. 2013, 66: 2-11.
[4] Yang L, Pavlovskaia E, Hendry D, et al. Vibro-impact responses of capsule system with various friction models [J]. International Journal of Mechanical Sciences, 2013, 72(72): 39-54.
[5]  Yan Y , Yang L , Liao M. A comparative study of the vibro-impact capsule systems with one-sided and two-sided constraints[J]. Nonlinear Dynamics, 2017, 89(2):1063-1087.
[6] 廖茂林.基于无线式内窥镜应用的激振胶囊非线性动力学行为研究[J].振动与冲击,2020,39(23):279-286.
LIAO Mao-lin. Study on nonlinear dynamic behavior of excitation capsules based on wireless endoscopic application [J]. Journal of Vibration and Shock, 2020, 39(23): 279-286.
[7] Storkholm J H, Villadsen G E, Jensen S L, et al. Passive elastic wall properties in isolated guinea pig small intestine[J]. Digestive Diseases & Sciences, 1995, 40(5): 976-982.
[8] Ciarletta P, Dario P, Tendick F, et al. Hyperelastic Model of Anisotropic Fiber Reinforcements within Intestinal Walls for Applications in Medical Robotics [J]. International Journal of Robotics Research, 2009, 28(10): 1279-1288.
[9] Kim J S, Sung I H, Kim Y T, et al. Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application [J]. Tribology Letters, 2006, 22(2): 143-149.
[10] Kim J S, Sung I H, Kim Y T, et al. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine [J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2007, 221(8): 37-45.
[11] 谭人嘉,刘浩,李洪谊,等.胶囊机器人与肠道准静态交互的临界滑动阻力研究[J].机器人,2014,36(6):704-710.
Tan Ren-jia, Liu Hao, Li Hong-yi, et al. Critical sliding resistance of quasi-static interaction between capsule robot and intestine[J]. Robotics, 2014, 36(6): 704-710.
[12] Tian J, Liu Y, Chen J, et al. Finite element analysis of a self-propelled capsule robot moving in the small intestine [J]. International Journal of Mechanical Sciences, 2021, 20(6): 3-6.
[13] Cheng Z, Hao L, Tan R, et al. Modeling of Velocity-dependent Frictional Resistance of a Capsule Robot Inside an Intestine [J]. Tribology Letters, 2012, 47(2): 295-301.
[14] Li P, Kothari V, Terry B S. Design and Preliminary Experimental Investigation of a Capsule for Measuring the Small Intestine Contraction Pressure [J]. IEEE Transactions on Biomedical Engineering, 2015, 62(11): 2702-2708.
[14] Hall J E. Guyton and Hall Textbook of Medical Physiology [M]. 2011.
[15] Yan Y, Liu Y, Manfredi L, et al. Modelling of a vibro-impact self-propelled capsule in the small intestine [J]. Nonlineardynamics, 2019, 96(1):123-144.
[16] Liao M, Jiajia Z, Yang L, et al. Speed optimisation and reliability analysis of a self-propelled capsule robot moving in an uncertain frictional environment [J], International Journal of Mechanical Sciences, 2022, 221:107156.
[17] Zhu J, Liao M, Zheng Y, et al. Multi-objective optimisation based on reliability analysis of a self-propelled capsule system [J]. Meccanica (2022). https://doi.org/10.1007/s11012-022-01519-3.
[18] Guo B, Liu Y, Prasad S. Modelling of capsule–intestine contact for a self-propelled capsule robot via experimental and numerical investigation [J]. Nonlinear Dynamics, 2019, 98: 3155-3167.
[19] Guo B, Yang L, Rauf B, et al. Self-propelled capsule endoscopy for small-bowel examination: Proof-of-concept and model verification [J]. International Journal of Mechanical Sciences, 2020, 174:105506.
[20] Clouse R E, Staiano A, Bickston S J, et al. Characteristics of the propagating pressure wave in the esophagus [J]. Digestive Diseases and Sciences, 1996, 41(12): 2369-2376.
[21] Wu J, Cheng Y, Wei Y, et al. Rheological Behavior of Dog's Small Intestinal Mucus [J]. Journal of Chongqing University, 2000, 23: 10-12.
[22] Varum F, Veiga F, Sousa J S, et al. An investigation into the role of mucus thickness on mucoadhesion in the gastrointestinal tract of pig [J]. European Journal of Pharmaceutical Sciences, 2010, 40(4): 335-341.

PDF(4635 KB)

Accesses

Citation

Detail

段落导航
相关文章

/