凹槽结构对冲击射流流场和声场特性的影响研究

齐龙舟1,冯和英1,赵鲲2,张俊龙2,王海涛1,杨成浩1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 105-112.

PDF(1783 KB)
PDF(1783 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 105-112.
论文

凹槽结构对冲击射流流场和声场特性的影响研究

  • 齐龙舟1,冯和英1,赵鲲2,张俊龙2,王海涛1,杨成浩1
作者信息 +

Experimental and numerical research on the noise suppression and wake control of impinging jets by virtue of groove structure

  • QI Longzhou1,FENG Heying1,ZHAO Kun2,ZHANG Junlong2,WANG Haitao1,YANG Chenghao1
Author information +
文章历史 +

摘要

采用数值模拟和试验研究相结合的方法探究了开槽斜板对射流冲击噪声及壁面横向射流尾迹的影响,并分析了其降噪机理。试验方面,采用 PIV 技术和远场传声器弧阵列在半消声室内测量了冲击射流流场和声场特性,数值模拟则采用分离涡模拟方法 (detached-eddy simulation ,DES) 和 FW-H 声学比拟法相结合的混合方法,数值结果与流场/声场试验测量结果吻合较好。研究发现:冲击斜板的存在增加了冲击射流流场上游方向的声辐射;所有压比下,斜板表面凹槽结构都能够明显抑制横向流动,但只在 NPR > 2.5 时,开槽斜板才能较好的抑制冲击射流噪声;开槽斜板主要是降低 2 500 Hz 附近的纯音幅值,对 3500 ~ 4 500 Hz内的多个纯音基本不产生影响,因为凹槽结构会耗散掉冲击射流滞止区内的旋涡对,但不会影响射流剪切层涡脱落频率 (3 750 Hz) 及该频率附近的纯音;开槽斜板对横向流动的抑制效果高达 46%,且不同槽宽、槽深的开槽斜板均能够有效控制冲击射流横向流动尾迹。
关键词:尾迹流动控制;冲击射流噪声抑制;分离涡模拟;PIV 流场;凹槽结构

Abstract

The method of combining numerical simulation and experimental research is used to explore the control effect and control mechanism of the slotted inclined plate on jet impact noise and wall-jet. In terms of experiments, PIV technology and far-field microphone arc arrays are used to measure the flow field and sound field characteristics of impinging jets in a semi-anechoic chamber. The numerical simulation uses a hybrid method combining the separation eddy simulation method (DES) and the FW-H acoustic analogy method. The numerical results are in good agreement with the experimental measurement results of the flow field/sound field. The study found that the existence of the plate increases the acoustic radiation in the upstream direction of the impinging jet flow field; at all pressure ratios, the groove structure on the plate surface can obviously inhibit the cross-flow, but only when the NPR> 2.5, the slotted inclined plate in order to better suppress the impact jet noise; the slotted inclined plate mainly reduces the pure tone amplitude around 2500Hz, and basically has no effect on the multiple pure tones in the range of 3500 Hz~4500 Hz, because the groove structure will dissipate the impact jet the vortex pair in the stagnation zone does not affect the jet shear layer vortex shedding frequency (3750 Hz) and the pure tone near this frequency; the slotted inclined plate has a 46% suppression effect on the cross-flow, and different groove widths and groove depths can effectively control the cross-flow wake of the impinging jet.
Key words: wake control; impingement jet noise control; detached-eddy simulation(DES);PIV flow field; groove structure

关键词

尾迹流动控制
/ 冲击射流噪声抑制 / 分离涡模拟 / PIV 流场 / 凹槽结构

Key words

wake control
/ impingement jet noise control / detached-eddy simulation(DES);PIV flow field / groove structure 

引用本文

导出引用
齐龙舟1,冯和英1,赵鲲2,张俊龙2,王海涛1,杨成浩1. 凹槽结构对冲击射流流场和声场特性的影响研究[J]. 振动与冲击, 2022, 41(22): 105-112
QI Longzhou1,FENG Heying1,ZHAO Kun2,ZHANG Junlong2,WANG Haitao1,YANG Chenghao1. Experimental and numerical research on the noise suppression and wake control of impinging jets by virtue of groove structure[J]. Journal of Vibration and Shock, 2022, 41(22): 105-112

参考文献

[1]  UZUN A, HUSSAINI M Y. Noise generation in the near-nozzle region of a chevron nozzle jet flow[J]. AIAA Journal, 2012, 47(8):1793-1810.
[2] 陈明,黄海津,王多银,等.半封闭圆管冲击射流流动特性PIV试验研究[J].振动与冲击, 2021, 40(15): 90-97.
CHEN Ming, HUANG Haijin,WANG Duoyin, et al. PIV test for flow characteristics of impinging jet in semi-closed circular pipe[J]. Journal of Vibration and Shock,2021,40(15):90-97.
[3] 张俊龙,雷红胜,赵鲲,等.射流噪声测量中远场测量边界影响研究[J].振动与冲击,2020,39(21):47-54.
ZHANG Junlong, LEI Hongsheng, ZHAO Kun,et al. Influence of far-field measurement boundary on jet noise measurements[J]. Journal of Vibration and Shock, 2020, 39(21):47-54.
[4]  汪洋海,李晓东.超声速喷流啸声的控制方法[J].推进技术,2007(2):211-215.
WANG Yanghai, LI Xiaodong. Control method for supersonic jet screech tones[J]. Journal Propulsion Technology, 2007(2):211-215.
[5] 李晓东,徐希海,高军辉,等.喷流噪声研究进展与展望[J].空气动力学学报,2018,36(3):398-409.
LI Xiaodong, XU Xihai, GAO Junhui, et al. Progress and prospect on jet noise study[J]. Acta Aerodynamics Sinica,2018,36(3):398-409.
[6] 冯峰,郭力,王强.高亚声速湍流喷流气动噪声数值分析[J].力学学报,2016,48(5):1049-1060.
FENG Feng, GUO Li, WANG Qiang. Numerical investigation of noise of a high subsonic turbulent jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1049- 1060.
[7] 葛其明,姚朝晖,何枫.超声速欠膨胀冲击射流流场振荡的数值模拟[J].推进技术, 2004, 4(1):7-10.
GE Qiming, YAO Zhaohui, HE Feng. Numerical simulation of flow field oscillation of under-expanded supersonic imping- ing jet[J]. Journal of Propulsion Technology,2004,4(1):7-10.
[8] 甘才俊,何枫,姚朝晖,等.冲击射流中反馈环机理的再研究[J].力学学报,2009,41(2):259-264.
 GAN Caijun, HE Feng, YAO Zhaohui, et al. Investigation of feedback loop in the impinging jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009,41(2): 259-264.
[9] 何枫,谢峻石,姚朝晖.超声速欠膨胀冲击射流的数值模拟[J].推进技术,2002(2):96-99.
 HE Feng, XIE Junshi, YAO Zhaohui. Numerical simulation under-expanded supersonic impinging jet[J]. Journal Propulsion  Technology, 2002 (2): 96-99.
[10] DHAMANEKAR A, SRINIVASAN K. Effect of impingement surface roughness on the noise from impinging jets[J]. Physics of Fluids, 2014, 26(3): 1039-1057.
[11] ?齐龙舟,赵鲲,冯和英,等.不同冲击距离下斜板开槽对超声速射流冲击噪声的影响研究[J/OL].航空学报, {3},{4}{5}:1-10.
 QI Longzhou, ZHAO Kun, FENG Heying, et al. Research on the influence of slotting on the inclined plate at different impact distances on the impact noise of supersonic jet[J/OL]. Acta Aeronautica et Astronautica Sinica{3},{4}{5}:1-10.
[12] 张俊龙,雷红胜,田昊,等.亚声速矩形射流的噪声辐射特性和声源分布[J].航空学报, 2020, 41(2): 123386.
 ZHANG Junlong, LEI Hongsheng, TIAN Hao, et al. Research on noise radiation characteristics and source distribution of  subsonic rectangular jet[J]. Acta Aeronautica et  Astronautica Sinica, 2020, 41(2): 123386.
[13] VALENTICH G, UPADHYAY P, KUMAR R. Mixing characteristics of a moderate aspect ratio screeching supersonic rectangular jet[J]. Experiments in Fluids, 2016, 57(5):1-14.
[14] XIA H, TUCKER P G. Numerical simulation of single-stream jets from a serrated nozzle[J]. Flow Turbulence & Combustion, 2012, 88(1/2):3-18.
[15] HUMPHREY N J, EDGINGTON-MITCHELL D. The effect of low lobe count chevron nozzles on supersonic jet screech[J]. International Journal of Aeroacoustics, 2016, 15(3).?
[16] DHAMANEKAR A, SRINIVASAN K. Effect of impingement surface roughness on the noise from impinging jets[J]. Physics of Fluids, 2014, 26(3): 1039-1057.
[17] CLARK I, BAKER D, ALEXANDER W N, et al. Experimental and theoretical analysis of bio-inspired trailing edge noise control devices[C]// 22nd AIAA/CEAS Aeroacoustics Conference. Lyon : AIAA ,2016.
[18] KOSCHATZKY V, MOORE P D, WESTERWEEL J, et al. High speed PIV applied to aerodynamic noise investigation[J]. Experiments in Fluids, 2011, 50(4):863-876.
 
[19] POWELL, ALAN. Observations of the oscillation modes of choked circular jets[J]. Journal of the Acoustical Society of America, 1992, 92(5):2823-2836.
[20] NONOMURA T, HONDA H, NAGATA Y, et al. Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates[J]. AIAA Journal, 2016, 54(3):816-827.
[21] RAMAN G. Advances in understanding supersonic jet screech: review and perspective[J]. Progress in Aerospace Sciences, 1998, 34(1/2):45-106.

PDF(1783 KB)

Accesses

Citation

Detail

段落导航
相关文章

/