1.Hunan Key Laboratory of Mechanical Equipment Health Maintenance, Hunan University of Science and Technology, Xiangtan 411201, China;
2.State Key Laboratory of Aerodynamics, Aerodynamics Research and Development Center, Mianyang 621000, China
The method of combining numerical simulation and experimental research is used to explore the control effect and control mechanism of the slotted inclined plate on jet impact noise and wall-jet. In terms of experiments, PIV technology and far-field microphone arc arrays are used to measure the flow field and sound field characteristics of impinging jets in a semi-anechoic chamber. The numerical simulation uses a hybrid method combining the separation eddy simulation method (DES) and the FW-H acoustic analogy method. The numerical results are in good agreement with the experimental measurement results of the flow field/sound field. The study found that the existence of the plate increases the acoustic radiation in the upstream direction of the impinging jet flow field; at all pressure ratios, the groove structure on the plate surface can obviously inhibit the cross-flow, but only when the NPR> 2.5, the slotted inclined plate in order to better suppress the impact jet noise; the slotted inclined plate mainly reduces the pure tone amplitude around 2500Hz, and basically has no effect on the multiple pure tones in the range of 3500 Hz~4500 Hz, because the groove structure will dissipate the impact jet the vortex pair in the stagnation zone does not affect the jet shear layer vortex shedding frequency (3750 Hz) and the pure tone near this frequency; the slotted inclined plate has a 46% suppression effect on the cross-flow, and different groove widths and groove depths can effectively control the cross-flow wake of the impinging jet.
QI Longzhou1,FENG Heying1,ZHAO Kun2,ZHANG Junlong2,WANG Haitao1,YANG Chenghao1.
Experimental and numerical research on the noise suppression and wake control of impinging jets by virtue of groove structure[J]. Journal of Vibration and Shock, 2022, 41(22): 105-112
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] UZUN A, HUSSAINI M Y. Noise generation in the near-nozzle region of a chevron nozzle jet flow[J]. AIAA Journal, 2012, 47(8):1793-1810.
[2] 陈明,黄海津,王多银,等.半封闭圆管冲击射流流动特性PIV试验研究[J].振动与冲击, 2021, 40(15): 90-97.
CHEN Ming, HUANG Haijin,WANG Duoyin, et al. PIV test for flow characteristics of impinging jet in semi-closed circular pipe[J]. Journal of Vibration and Shock,2021,40(15):90-97.
[3] 张俊龙,雷红胜,赵鲲,等.射流噪声测量中远场测量边界影响研究[J].振动与冲击,2020,39(21):47-54.
ZHANG Junlong, LEI Hongsheng, ZHAO Kun,et al. Influence of far-field measurement boundary on jet noise measurements[J]. Journal of Vibration and Shock, 2020, 39(21):47-54.
[4] 汪洋海,李晓东.超声速喷流啸声的控制方法[J].推进技术,2007(2):211-215.
WANG Yanghai, LI Xiaodong. Control method for supersonic jet screech tones[J]. Journal Propulsion Technology, 2007(2):211-215.
[5] 李晓东,徐希海,高军辉,等.喷流噪声研究进展与展望[J].空气动力学学报,2018,36(3):398-409.
LI Xiaodong, XU Xihai, GAO Junhui, et al. Progress and prospect on jet noise study[J]. Acta Aerodynamics Sinica,2018,36(3):398-409.
[6] 冯峰,郭力,王强.高亚声速湍流喷流气动噪声数值分析[J].力学学报,2016,48(5):1049-1060.
FENG Feng, GUO Li, WANG Qiang. Numerical investigation of noise of a high subsonic turbulent jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1049- 1060.
[7] 葛其明,姚朝晖,何枫.超声速欠膨胀冲击射流流场振荡的数值模拟[J].推进技术, 2004, 4(1):7-10.
GE Qiming, YAO Zhaohui, HE Feng. Numerical simulation of flow field oscillation of under-expanded supersonic imping- ing jet[J]. Journal of Propulsion Technology,2004,4(1):7-10.
[8] 甘才俊,何枫,姚朝晖,等.冲击射流中反馈环机理的再研究[J].力学学报,2009,41(2):259-264.
GAN Caijun, HE Feng, YAO Zhaohui, et al. Investigation of feedback loop in the impinging jet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009,41(2): 259-264.
[9] 何枫,谢峻石,姚朝晖.超声速欠膨胀冲击射流的数值模拟[J].推进技术,2002(2):96-99.
HE Feng, XIE Junshi, YAO Zhaohui. Numerical simulation under-expanded supersonic impinging jet[J]. Journal Propulsion Technology, 2002 (2): 96-99.
[10] DHAMANEKAR A, SRINIVASAN K. Effect of impingement surface roughness on the noise from impinging jets[J]. Physics of Fluids, 2014, 26(3): 1039-1057.
[11] ?齐龙舟,赵鲲,冯和英,等.不同冲击距离下斜板开槽对超声速射流冲击噪声的影响研究[J/OL].航空学报, {3},{4}{5}:1-10.
QI Longzhou, ZHAO Kun, FENG Heying, et al. Research on the influence of slotting on the inclined plate at different impact distances on the impact noise of supersonic jet[J/OL]. Acta Aeronautica et Astronautica Sinica{3},{4}{5}:1-10.
[12] 张俊龙,雷红胜,田昊,等.亚声速矩形射流的噪声辐射特性和声源分布[J].航空学报, 2020, 41(2): 123386.
ZHANG Junlong, LEI Hongsheng, TIAN Hao, et al. Research on noise radiation characteristics and source distribution of subsonic rectangular jet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123386.
[13] VALENTICH G, UPADHYAY P, KUMAR R. Mixing characteristics of a moderate aspect ratio screeching supersonic rectangular jet[J]. Experiments in Fluids, 2016, 57(5):1-14.
[14] XIA H, TUCKER P G. Numerical simulation of single-stream jets from a serrated nozzle[J]. Flow Turbulence & Combustion, 2012, 88(1/2):3-18.
[15] HUMPHREY N J, EDGINGTON-MITCHELL D. The effect of low lobe count chevron nozzles on supersonic jet screech[J]. International Journal of Aeroacoustics, 2016, 15(3).?
[16] DHAMANEKAR A, SRINIVASAN K. Effect of impingement surface roughness on the noise from impinging jets[J]. Physics of Fluids, 2014, 26(3): 1039-1057.
[17] CLARK I, BAKER D, ALEXANDER W N, et al. Experimental and theoretical analysis of bio-inspired trailing edge noise control devices[C]// 22nd AIAA/CEAS Aeroacoustics Conference. Lyon : AIAA ,2016.
[18] KOSCHATZKY V, MOORE P D, WESTERWEEL J, et al. High speed PIV applied to aerodynamic noise investigation[J]. Experiments in Fluids, 2011, 50(4):863-876.
[19] POWELL, ALAN. Observations of the oscillation modes of choked circular jets[J]. Journal of the Acoustical Society of America, 1992, 92(5):2823-2836.
[20] NONOMURA T, HONDA H, NAGATA Y, et al. Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates[J]. AIAA Journal, 2016, 54(3):816-827.
[21] RAMAN G. Advances in understanding supersonic jet screech: review and perspective[J]. Progress in Aerospace Sciences, 1998, 34(1/2):45-106.