基于时域识别方法的加筋土挡墙动力特性研究

李思汉1,2,3,蔡晓光1,2,3,黄鑫1,2,3,4,景立平1,4,张少秋1,徐洪路4

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 113-120.

PDF(1767 KB)
PDF(1767 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 113-120.
论文

基于时域识别方法的加筋土挡墙动力特性研究

  • 李思汉1,2,3,蔡晓光1,2,3,黄鑫1,2,3,4,景立平1,4,张少秋1,徐洪路4
作者信息 +

Dynamic characteristics of a reinforced soil retaining wall based on the time domain identification method

  • LI Sihan1,2,3,CAI Xiaoguang1,2,3,HUANG Xin1,2,3,4,JING Liping1,4,ZHANG Shaoqiu1,XU Honglu4
Author information +
文章历史 +

摘要

为探究加筋土挡墙(reinforced soil retaining wall ,RSRW)在地震荷载作用下的动力响应变化规律,结合振动台试验分析挡墙与刚性箱连接处的墙面变形和回填土沉降分布规律,利用时域识别方法分析挡墙的固有频率和阻尼比的变化规律,利用数理拟合方法探究加速度放大分布规律。结果表明:随着荷载条件的增加,面板呈现出中心鼓胀、整体外倾等多种变形模式;顶部回填土沉降呈现出均匀沉降和凸起差异沉降的分布规律。在1.0g以下时,固有频率的实测结果在Richardson 和Lee方法的预测范围内,与伍永胜方法的计算值接近。阻尼比随墙高的增加而减小。部分规范中加速度放大系数分布规律与实测结果不一致,结合规范和试验结果,提出了适用于模块式加筋土挡墙的加速度放大系数分布公式。
关键词:模块式加筋土挡墙;振动台试验;时域识别方法;固有频率;阻尼比;加速度响应

Abstract

To explore the variation law of dynamic response of reinforced soil retaining wall (RSRW) under seismic load, the distribution law of wall deformation and backfill settlement at the junction of RSRW and rigid box was analyzed by shaking table test. The variation law of natural frequency and damping ratio was analyzed by time domain identification method. The law of acceleration amplification was explored by mathematical fitting method. The results show that with the increase of load conditions, the facing presents a variety of deformation modes such as central bulging and overall outward inclination, and the settlement of the top backfill presents the distribution law of uniform settlement and convex differential settlement. When the acceleration input is less than 1.0g, the measured results of natural frequency are within the prediction range of Richardson and Lee methods, and are close to the calculated values of Wu Yongsheng method. The damping ratio decreases with the increase of the wall height. The laws of acceleration amplification factor distribution in some specifications are inconsistent with the measured results. Combined with the specifications and test results, the acceleration amplification factor distribution formula suitable for modular-block RSRW is proposed.
Key words: Modular-block reinforced soil retaining wall; Shaking table test; Time domain identification method; Natural frequency; Damping ratio; Acceleration response

关键词

模块式加筋土挡墙 / 振动台试验 / 时域识别方法 / 固有频率 / 阻尼比 / 加速度响应

Key words

Modular-block reinforced soil retaining wall / Shaking table test / Time domain identification method / Natural frequency / Damping ratio / Acceleration response

引用本文

导出引用
李思汉1,2,3,蔡晓光1,2,3,黄鑫1,2,3,4,景立平1,4,张少秋1,徐洪路4. 基于时域识别方法的加筋土挡墙动力特性研究[J]. 振动与冲击, 2022, 41(22): 113-120
LI Sihan1,2,3,CAI Xiaoguang1,2,3,HUANG Xin1,2,3,4,JING Liping1,4,ZHANG Shaoqiu1,XU Honglu4. Dynamic characteristics of a reinforced soil retaining wall based on the time domain identification method[J]. Journal of Vibration and Shock, 2022, 41(22): 113-120

参考文献

[1] 王贺,杨广庆,刘华北,等.模块面板式土工格栅加筋土挡墙动态特性试验研究[J].振动与冲击,2016,35(07):1-9.
Wang H., Yang G., Liu H., et al. Test for dynamic characteristics of a geogrid reinforced soil retaining wall with concrete-block panels [J]. Journal of Vibration and Shock, 2016,35(07): 1-9.
[2] Han, J., Jiang, Y., Xu, C. Recent advances in geosynthetic-reinforced retaining walls for highway applications[J]. Frontiers of Structural and Civil Engineering, 2018, 12(02), 239-247.
[3] Xu, C., Luo, M., Shen, P., et al. Seismic performance of a whole Geosynthetic Reinforced Soil – Integrated Bridge System (GRS-IBS) in Shaking table test[J]. Geotextiles and Geomembranes, 2020, 48(3), 315-330.
[4] 杨广庆. 中国土工合成材料行业现状分析[DB/OL].中国土工合成材料工程协会(微信公众号),2021-01-26.
Yang, G. Status Analysis of Geosynthetics Industry in China[EB/OL], China Technical Association on Geosynthetics (WeChat Public Number), 2021-01-26.
[5] Bizjak, K. F., Lenart, S. Life cycle assessment of a geosynthetic-reinforced soil bridge system- A case study[J]. Geotextiles and Geomembranes, 2018, 46(5), 543-558.
[6] Kuwano, J., Miyata, Y., Koseki, J. Performance of reinforced soil walls during the 2011 Tohoku earthquake[J]. Geosynthetics  International, 2014, 21(3), 179-196.
[7] 朱宏伟,姚令侃,张旭海. 两种加筋土挡墙的动力特性比较及抗震设计建议[J]. 岩土工程学报,2012,34(11):2072-2080.
Zhu, H., Yao, L., Zhang, X. Comparison of dynamic characteristics between netted and packaged reinforced soil retaining walls and recommendations for seismic design. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2072-2080.
[8] 朱宏伟,姚令侃,陈晓龙,等. 土工格栅返包土工袋加筋土挡墙的地震响应分析及设计建议[J]. 岩土工程学报,2017,39(02):319-326.
Zhu, H., Yao, L., Chen, X., et al. Seismic behaviors and design recommendations of ecological bag-reinforced retaining wall. Chinese Journal of Geotechnical Engineering, 2017, 39(02):319-326.
[9] Huang, C.C. Seismic response of vertical-face wrap-around reinforced soil walls. Geosynthetics  International, 2019, 26 (2): 146-163..
[10] 徐鹏,蒋关鲁,胡耀芳,等. 整体刚性面板加筋土挡墙基频影响因素计算分析[J]. 岩土力学,2018,39(12):4475-4481.
Xu, P., Jiang, G., Hu, Y., et al. Calculation of fundamental frequencies of reinforced retaining walls with full-height rigid facing. Rock and Soil Mechanics, 2018, 39(12): 4475-4483.
[11] Xu, P., Hatami, K., Li, T. Natural frequencies of full-height panel reinforced soil walls of variable cross-section. Geosynthetics  International, 2019, 26(3), 320-331.
[12] Ghanbari, A., Hoomaan, E., Mojallal, M. An analytical method for calculating the natural frequency of retaining walls. International Journal of Civil Engineering, 2013, 11, 1-9.
[13] Sarbishei, S., Fakher, A. Energy-based horizontal slice method for pseudo-static analysis of reinforced walls. Geosynthetics  International, 2012, 19(5), 370-384.
[14] Ramezani, M. S., Ghanbari, A., Hosseini, S. Analytical method for calculating natural frequencies of geosynthetic-reinforced wall with full-height concrete facing. Geosynthetics  International, 2017, 24(1), 1-13.
[15] 伍永胜. 加筋土挡墙动力特性及抗震设计方法研究[D].长沙:湖南大学,2006.
Wu, Y. S. The Research on the Dynamical Property and Anti-seismic Design Method of Reinforced Earth Retaining. Changsha: Hunan University, 2006.
[16] Hatami, K., Bathurst, R. J. Effect of structural design on fundamental frequency of reinforced-soil retaining walls. Soil Dynamics and Earthquake Engineering. 2000, 19(3), 137-157.
[17] GB 50111-2006. 铁路工程抗震设计规范[S]. 北京:中国计划出版社,2006.
GB 50111-2006. Code for Seismic Design of Railway Engineering, Beijing: China Plan Press, 2006.
[18] JTG B02-2013. 公路工程抗震规范[S]. 北京:人民交通出版社,2013.
JTG B02-2013. Specification of Seismic Design for Highway Engineering, Beijing: China Communications Press, 2013.
[19] Li, S., Cai, X., Jing, Li., et al. Reinforcement Strain and Potential Failure Surface of Geogrid Reinforced Soil-Retaining Wall under Horizontal Seismic Loading. Shock  and Vibration. 2020, 1-17.
[20] Li, S., Cai, X., Jing, L., et al. Lateral displacement control of modular-block reinforced soil retaining walls under horizontal seismic loading, Soil Dynamics and Earthquake Engineering, 2021, 141, 106485.
[21] Cai X., Li, S., Xu, H., et al. Shaking Table Study on the Seismic Performance of Geogrid Reinforced Soil Retaining Wall, Advances in Civil Engineering. 2021, 1-16.
[22] Iai, S. Similitude for shaking table tests on Soil-Structure-Fluid model in 1g gravitational field, Soils and Foundations, 1989, 29(1), 105-118.
[23] Guler, E., Selek, O. Reduced-scale Shaking Table Tests on Geosynthetic-Reinforced Soil Walls with Modular Facing. Journal of Geotechnical and Geoenvironmental Engineering. 2014, 140(6), 04014015.
[24] Zheng, Y., Mccartney, J. S., Shing, P. B., et al. Physical Model Tests of Half-Scale Geosynthetic Reinforced Soil Bridge Abutments. II: Dynamic Loading. Journal of Geotechnical and Geoenvironmental Engineering. 2019, 145(11), 04019095.
[25] Wang, L., Chen, G., Su, C. Experimental study on seismic response of geogrid reinforced rigid retaining walls with saturated backfill sand. Geotextiles and Geomembranes, 2015, 43(1), 35-45.
[26] ASTM. 2015. Standard test method for determining tensile properties of geogrids by the single or multi-rib tensile method. ASTM D6637. West Conshohocken, PA: ASTM.
[27] FHWA-HRT-11-026. Geosynthetic Reinforced Soil Integrated Bridge System interim implementation guide[S]. America: Federal Highway Administration, 2011.
[28] Yazdandoust M. Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test. Soil Dynamics and Earthquake Engineering, 2017, 97, 216-232.
[29] 林宇亮. 岩土构筑物抗震动力特性及地震动土压力研究[D]. 长沙:中南大学,2011.
Lin, Y. L. Research on seismic behaviors of geotechnical structures and seismic earth pressure[D]. Changsha: Central South University, 2011.
[30] 魏明,罗强,蒋良潍,等. 悬臂式加筋土复合支挡结构振动台模型试验研究[J]. 岩石力学与工程学报,2021,40(03):607-618.
Wei, M., Luo, Q., Jiang, L., et al. Shaking table tests on cantilever retaining walls with soil reinforcement. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(03): 607-618.
[31] 徐琨鹏. 地下结构拟静力抗震分析方法及推覆试验研究[D]. 哈尔滨:中国地震局工程力学研究所,2019.
Xu, K. P. Study on pseudo-static seismic analysis method of underground structures and pushover test[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2019.
[32] Brown S. F., Kwan J., Thom N. H. Identifying the key parameters that influence geogrid reinforcement of railway ballast[J]. Geotextiles and Geomembranes, 2007, 25(6):326-335.
[33] Liu F. Y., Zheng Q. T., Wang J., et al. Effect of particle shape on shear behaviour of aggregate-geogrid interface under different aperture ratios[J]. International Journal of Pavement Engineering, 2021. DOI: 10.1080/10298436.2020.1843035.

PDF(1767 KB)

Accesses

Citation

Detail

段落导航
相关文章

/