分数阶热弹性理论下中空粘弹性圆柱热弹耦合动力响应

郭颖1,熊春宝2,虞跨海1,梁斌1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 152-159.

PDF(2494 KB)
PDF(2494 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 152-159.
论文

分数阶热弹性理论下中空粘弹性圆柱热弹耦合动力响应

  • 郭颖1,熊春宝2,虞跨海1,梁斌1
作者信息 +

Thermoelastic coupled dynamic response of a hollow viscoelastic cylinder based on the fractional order thermoelastic theory

  • GUO Ying1,XIONG Chunbao2,YU Kuahai1,LIANG Bin1
Author information +
文章历史 +

摘要

基于Ezzat型分数阶广义热弹性理论,引入Kelvin-Voigt粘弹性模型建立了粘弹性中空圆柱热弹耦合动力模型,探讨了粘弹性中空圆柱热弹耦合问题。中空圆柱体内外表面均有一定约束,且在其外表面处施加热冲击作用。给出Ezzat型分数阶双相滞后广义热弹性理论下问题的控制方程,结合Laplace变换和数值反变换技术对控制方程进行求解,最终得到中空圆柱中无量纲位移、温度、径向应力和环向应力的分布规律,并分析了粘弹性松弛时间因子和分数阶系数对各物理量的影响。结果表明:粘弹性松弛时间因子对于无量纲温度外的所有物理量均有明显影响,但对径向应力和环向应力的影响更为明显;分数阶系数对于所有物理量均有明显影响,在曲线峰值或谷值处影响最显著。
关键词:分数阶广义热弹性;Kelvin-Voigt粘弹性;Laplace变换;热冲击

Abstract

Based on Ezzat’s fractional order thermoelastic theory, the Kelvin-Voigt viscoelastic model was introduced to establish the thermoelastic coupling dynamic model of viscoelastic hollow cylinder, and the dynamic response of a viscoelastic hollow cylinder subjected to a thermal shock on outer surface is investigated. The inner and outer surfaces of the hollow cylinder are constrained to some extent. The governing equations of the problem based on the fractional order thermoelastic theory are formulated and solved by means of Laplace transform and its numerical inversion. The non-dimensional temperature, displacement, radial stress and hoop stress are thusly obtained and illustrated graphically. In the calculation, the emphasis is focused on investigating the effect of the viscoelastic relaxation time and fractional coefficient on the variations of the physical variables considered. The results show that the viscoelastic relaxation time has an obvious effect on all physical variables except the non-dimension temperature and the fractional coefficient has obvious influence on all physical variables, especially at the peak or valley of the curve.
Key words: Fractional order thermoelastic; Kelvin-Voigt viscoelastic; Laplace transform; Thermal shock

关键词

分数阶广义热弹性 / Kelvin-Voigt粘弹性 / Laplace变换 / 热冲击

Key words

Fractional order thermoelastic / Kelvin-Voigt viscoelastic / Laplace transform / Thermal shock

引用本文

导出引用
郭颖1,熊春宝2,虞跨海1,梁斌1. 分数阶热弹性理论下中空粘弹性圆柱热弹耦合动力响应[J]. 振动与冲击, 2022, 41(22): 152-159
GUO Ying1,XIONG Chunbao2,YU Kuahai1,LIANG Bin1. Thermoelastic coupled dynamic response of a hollow viscoelastic cylinder based on the fractional order thermoelastic theory[J]. Journal of Vibration and Shock, 2022, 41(22): 152-159

参考文献

[1] Biot M A. Thermoelasticity and irreversible thermodynamics [J]. Journal of Applied Physics, 1956, 27: 240-253.
[2] Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity [J]. Journal of the Mechanics and Physics of Solids, 1967, 15: 299-309.
[3] Green A E, Lindsay K A. Thermoelasticity [J]. Journal of Elasticity, 1972, 2: 1-7.
[4] Green A E, Naghdi P M. A reexamination of the basic results of themomechanics [J]. Proceedings of the Royal Society of London A, 1991, 432: 171-194.
[5] Green A E, Naghdi P M. On undamped heat waves in an elastic solid [J]. Journal of Thermal Stresses, 1992, 15: 252-264.
[6] Green A E, Naghdi P M. Thermoelasticity without energy dissipation [J]. Journal of Elasticity, 1993, 31: 189-208.
[7] Mandelbrot B B. The fractal geometry of nature [M]. New York: WH Freeman, 1982.
[8] Sherief H H, El-Said A, Abd El-Latif A. Fractional order theory of thermoelasiticity [J]. International Journal of Solids and Structures, 2010, 47: 269-275.
[9] Youssef H M. Theory of fractional order generalized thermoelasticity [J]. Journal of Heat Transfer-ASME, 2010, 132: 1-7.
[10] Ezzat M A, El-Karamany A S, Ezzat S M. Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer [J]. Nuclear Engineering and Design, 2012, 252: 267-277.
[11] Ezzat M A, El-Karamany A S, Fayik M A. Fractional order theory in thermoelastic solid with three-phase lag heat transfer [J]. Archive of Applied Mechanics, 2012, 82: 557-572.
[12] 闻敏杰, 徐金明, 熊厚仁. 基于分数阶热弹性理论的圆形隧洞热弹性耦合动力响应[J]. 振动与冲击, 2020, 39: 89-94.
         WEN Minjie, XU Jinming, XIONG Houren. Coupled dynamic response of a cylindrical tunnel based on fractional order thermo-elasticity theory [J]. Journal of Vibration and Shock, 2020, 39: 89-94.
[13] 闻敏杰, 徐金明, 熊厚仁. 衬砌与土相互作用的圆形隧洞分数阶热弹性动力响应[J]. 应用力学学报, 2020, 37: 2417-2425.
WEN Minjie, XU Jinming, XIONG Houren. Fractional order thermo-elastic dynamic response of a cylindrical cavity considering the dynamic interaction between lining and soil [J]. Chinese Journal of Applied Mechanics, 2020, 37: 2417-2425.
[14] 郑荣跃, 刘干斌, 唐国金. 考虑扩散效应圆形隧洞热弹性耦合动力响应研究[J]. 国防科技大学学报, 2008, 30(3): 27-31.
        ZHENG Rongyue, LIU Ganbin, TANG Guojin. Thermodynamic responses of a cylindrical tunnel in the theory of generalized thermoelastic diffusion [J]. Journal of National University of Defense Technology, 2008, 30(3): 27-31.
[15] 朱海陶, 万永平. 分数阶广义热弹性理论下中空柱热弹性分析[J]. 应用力学学报, 2017, 34:197-202.
ZHU Haitao, WAN Yongping. Thermo-elastic analysis of hollow cylinder by theory of fractional order generalized thermo-elasticity [J]. Chinese Journal of Applied Mechanics, 2017, 34:197-202.
[16] 郭颖, 李文杰, 马建军,等. 饱和多孔黏弹地基热-水-力耦合动力响应分析[J]. 力学学报, 2021, 53(4): 1081-1092. 
GUO Ying, LI Wenjie, MA Jianjun, et al. Dynamic coupled thermo-hydro-mechanical problem for saturated porous viscoelastic foundation [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1081-1092.
[17] Saidi A, Abouelregal A E. Thermoelastic model with higher-order time-derivatives and two phase-lags for an infinitely long cylinder under initial stress and heat source [J]. Journal of  Applied and Computational Mechanics, 2021, 7: 277-291.
[18] Ezzat M A, Othman M I, El-Karamany A S. State space approach to two-dimensional generalized thermoviscoelasticity with one relaxation time [J]. Journal of Thermal Stresses, 2002, 25: 295-316.
[19] Ezzat M A, El-Bary A A. On thermo-viscoelastic infinitely long hollow cylinder with variable thermal conductivity [J]. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2017, 23(8): 3263-3270.
[20] Kar A, Kanoria M. Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect [J]. Applied Mathematical Modelling, 2009, 33: 3287-3298.
[21] Othman M I, Abouelregal A E E. The effect of pulsed laser radiation on a thermoviscoelastic semi-infinite solid under two-temperature theory [J]. Archives of Thermodynamics, 2017, 3(38): 77-99.
[22] Abouelregal A E, Ahmad H. Response of thermoviscoelastic microbeams affected by the heating of laser pulse under thermal and magnetic fields [J]. Physica Scripta, 2020, 95: 125501.
[23] Povstenko Y Z. Fractional heat conduction equation and associated thermal stress [J]. Journal of Thermal Stresses, 2005, 28(1): 83-102.
[24] Bellman R, Kolaba R E, Locketee J A. Numerical inversion of the Laplace transform [M]. New York: American Elsevier Publishing Company, 1966.
[25] 马永斌, 何天虎. 基于分数阶热弹性理论的含有球型空腔无限大体的热冲击动态响应[J]. 工程力学, 2016, 33(7): 31-38. 
MA Yongbin, HE Tianhu. Thermal shock dynamic response of an infinite body with a spherical cavity under fractional order theory of thermoelastcity [J]. Enginering Mechanics, 2016, 33(7): 31-38.
[26] Bagri A, Eslami M R. A unified generalized thermoelasticity;solution for cylinders and spheres[J]. International Journal of Mechanical Sciences, 2007, 49(12): 1325-1335.

PDF(2494 KB)

187

Accesses

0

Citation

Detail

段落导航
相关文章

/