利用延迟反馈控制柔性圆柱涡激振动数值研究

邹 琳,王 程,徐劲力,陶 凡,左红成

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 193-201.

PDF(2858 KB)
PDF(2858 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 193-201.
论文

利用延迟反馈控制柔性圆柱涡激振动数值研究

  • 邹琳,王程,徐劲力,陶凡,左红成
作者信息 +

Numerical study on the vortex-induced vibration control of a flexible cylinder based on the delay feedback technology

  • ZOU Lin,WANG Cheng,XU Jingli,TAO Fan,ZUO Hongcheng
Author information +
文章历史 +

摘要

以三维细长柔性圆柱为研究对象,基于结构梁振动模型和尾流振子模型,采用二阶中心有限差分方法求解耦合方程,研究延迟反馈控制作用下柔性圆柱的涡激振动(vortex-induced vibration ,VIV)响应特性。研究发现:柔性圆柱的振动幅值和振动频率会随着延迟时间τ的增加呈现周期性变化,不同的延迟时间τ耦合不同的延迟增益kd,可以实现柔性圆柱不同振动幅值和振动频率的控制;在耦合延迟增益(kd)符号相反时,变化曲线会有半个周期的相位差;且延迟时间τ并不能改变振幅峰值,其大小只与延迟增益kd有关。理论分析证明:当τ不断增加时,振动频率f和波数k会趋向于定值。该研究提出的延迟反馈方法能够有效控制柔性圆柱的涡激振动,为海洋立管等柔性钝体的振动控制提供新的方法和思路。
关键词:柔性圆柱;尾流振子;涡激振动(VIV);延迟反馈;数值计算

Abstract

A numerical study based on wake oscillator and structure vibration oscillator using the time delay controller was conducted to determine the response of the vortex-induced vibration (VIV) on a flexible long cylinder. The coupling equations were solved based on the standard central finite difference method of the second order. The result shown that the vibration amplitude and frequency of the cylinder will change periodically as the delay time (τ) increases and different delay times τ are coupled with different delay gains kd, which can realize different vibration amplitudes and frequency of flexible cylinders. Time delay gain (kd) with opposite sign will lead a half-period phase difference in the vibration amplitude and frequency. The delay time τ can’t change the peak value of vibration amplitude, and the magnitude of the peak amplitude is only related to the delay gain kd. Finally, theoretical analysis proves that when τ keeps increasing, the vibration frequency f and wave number k tend to be constant. Delayed feedback control proposed in this paper can effectively control the vortex-induced vibration of the flexible cylinder, and provide new methods and ideas for controlling the vibration of marine risers.
 Key words: flexible cylinder; wake oscillator; vortex-induced vibration (VIV); time delay control; numerical computation

关键词

柔性圆柱 / 尾流振子 / 涡激振动(VIV) / 延迟反馈 / 数值计算

Key words

flexible cylinder / wake oscillator / vortex-induced vibration (VIV) / time delay control / numerical computation

引用本文

导出引用
邹 琳,王 程,徐劲力,陶 凡,左红成. 利用延迟反馈控制柔性圆柱涡激振动数值研究[J]. 振动与冲击, 2022, 41(22): 193-201
ZOU Lin,WANG Cheng,XU Jingli,TAO Fan,ZUO Hongcheng. Numerical study on the vortex-induced vibration control of a flexible cylinder based on the delay feedback technology[J]. Journal of Vibration and Shock, 2022, 41(22): 193-201

参考文献

[1] ?WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annu. Rev. Fluid Mech., 2004, 36: 413-455.
[2] GABBAI R D, BENAROYA H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sound and Vibration, 2005, 282(3/4/5): 575-616.
[3] SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(4): 389-447.
[4] 宋汝君,单小彪,李晋哲,等.压电俘能器涡激振动俘能的建模与实验研究[J].西安交通大学学报,2016,50(2):55-60.
SONG Rujun, SHAN Xiaobiao, LI Jinzhe,et al. Modeling and experimental study of piezoelectric energy harvester under vortex-induced vibration [J]. Journal of Xi’an Jiaotong University, 2016, 50(2):55-60.
[5] 宋汝君, 单小彪, 范梦龙,等.涡激振动型水力复摆式压电俘能器的仿真与实验研究[J]. 振动与冲击, 2017, 36(19): 78-83.
SONG Rujun, SHAN Xiaobiao,FAN Menglong, et al. Simulations and experiments on a hydrodynamic compound pendulum piezoelectric energy harvester accompanied with vortex-induced vibration [J]. Journal of Vibration and shock,2017, 36(19): 78-83.
[6] NEWMAN D J, KARNIADAKIS G E. A direct numerical simulation study of flow past a freely vibrating cable[J]. Journal of Fluid Mechanics, 1997, 344: 95-136.
[7] LUCOR D, IMAS L, KARNIADAKIS G E. Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows[J]. Journal of Fluids and Structures, 2001, 15(3/4): 641-650.
[8] LIE H, KAASEN K E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J]. Journal of Fluids and Structures, 2006, 22(4): 557-575.
[9] 高云, 付世晓, 熊友明, 等. 剪切来流下柔性圆柱体涡激振动响应试验研究[J]. 振动与冲击, 2016, 35(20): 142-148.
GAO Yun, FU Shixiao, XIONG Youming, et al. Experiment study on vortex induced vibration response of a flexible cylinder in sheared current [J]. Journal of Vibration and shock, 2016, 35(20): 142-148.
[10] 宋磊建, 付世晓, 任铁, 等. 均匀流下柔性立管涡激振动响应及涡激力载荷特性研究[J]. 振动与冲击, 2017, 36(22): 14-21.
SONG Leijian, FU Shixiao, REN Tie, et al. Structural response and vortex-induced force of flexible risers undergoing vortex-induced vibration in uniform flow [J]. Journal of Vibration and shock, 2017, 36(22): 14-21.
[11] LIN K, WANG J. Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method[J]. Ocean Engineering, 2019, 172: 468-486.
[12] BOURGUET R, KARNIADAKIS G E, TRIANTAFYLLOU M S. Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow[J]. Journal of Fluid Mechanics, 2013, 717: 361-375.
[13] XU W, MA Y, CHENG A, et al. Experimental investigation on multi-mode flow-induced vibrations of two long flexible cylinders in a tandem arrangement[J]. International Journal of Mechanical Sciences, 2018, 135: 261-278.
[14] WANG E, XU W, YU Y, et al. Flow-induced vibrations of three and four long flexible cylinders in tandem arrangement: an experimental study[J]. Ocean Engineering, 2019, 178: 170-184.
[15] 高云, 任铁, 付世晓, 等. 柔性立管涡激振动响应特性试验研究[J]. 振动与冲击, 2015, 34(17): 6-11.
GAO Yun, REN Tie, FU Shixiao et al. Tests for response characteristics of VIV of a flexible riser [J]. Journal of Vibration and Shock, 2015, 34(17): 6-11.
[16] NOACK B R, OHLE F, ECKELMANN H. On cell formation in vortex streets[J]. Journal of Fluid Mechanics, 1991, 227: 293-308.
[17] BALASUBRAMANIAN S, SKOP R A. A nonlinear oscillator model for vortex shedding from cylinders and cones in uniform and shear flows[J]. Journal of Fluids and Structures, 1996, 10(3): 197-214.
[18] FACCHINETTI M L, DE LANGRE E, BIOLLEY F. Vortex-induced travelling waves along a cable[J]. European Journal of Mechanics-B/Fluids, 2004, 23(1): 199-208.
[19] 高云,邹丽,宗智.两端铰接的细长柔性圆柱体涡激振动响应特性数值研究[J].力学学报,2018,50(1):9-20.
GAO Yun, ZOU Li, ZONG Zhi. Numerical study of response performance of vortex-induced vibration on a flexible cylinder with pinned-pinned boundary condition[J].  Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):9-20.
[20] 高云, 谭暖, 熊友明,等. 基于改进尾流振子模型的柔性圆柱体涡激振动响应特性数值研究[J]. 振动与冲击, 2017, 36(22): 86-92.
GAO Yun, TAN Nuan, XIONG Youming, et al. Numerical study of response performance of vortex-induced vibration on aflexible cylinder using a modified wake oscillator mode[J]. Journal of Vibration and Shock, 2017, 36(22): 86-92.
[21] FACCHINETTI M L, DE LANGRE E, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(2): 123-140.
[22] GAO Y, ZONG Z, ZOU L, et al. Vortex-induced vibrations and waves of a long circular cylinder predicted using a wake oscillator model[J]. Ocean Engineering, 2018, 156: 294-305.

PDF(2858 KB)

324

Accesses

0

Citation

Detail

段落导航
相关文章

/