基于状态依赖时滞的钻柱动力学稳定性分析

张鹤1,狄勤丰1,2,王文昌1,2,陈锋3,段浩宇1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 233-240.

PDF(2189 KB)
PDF(2189 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 233-240.
论文

基于状态依赖时滞的钻柱动力学稳定性分析

  • 张鹤1,狄勤丰1,2,王文昌1,2,陈锋3,段浩宇1
作者信息 +

Numerical stability analysis of the rotary drilling system on the basis of state-dependent delay

  • ZHANG He1,DI Qinfeng1,2,WANG Wenchang1,2,CHEN Feng3,DUAN Haoyu1
Author information +
文章历史 +

摘要

在石油深井钻探中,钻头与岩石相互作用诱发钻柱系统的自激振动,严重时导致钻头磨损和钻柱疲劳失效,影响钻井效率。钻柱动力系统不稳定的主要原因是钻头与岩石的相互作用引起钻柱动力系统中出现了状态依赖时滞变量,本文考虑钻井液阻尼的影响,给出了控制钻头轴向和扭转运动的状态依赖时滞微分方程,引入钻头运动轨迹函数对状态依赖时滞变量进行描述,将状态依赖时滞微分方程转化为非线性耦合的偏微分和常微分方程,并利用谱方法和伽辽金方法分析了上述耦合方程的线性稳定性,给出了钻柱动力学系统随钻井参数变化的稳定性图谱,对多自由度钻柱动力学系统的稳定性进行了分析。最后,与相关文献中的结果及数值模拟结果进行对比,验证了本文稳定性数值分析方法的准确性,并研究了阻尼对钻柱动力学系统稳定性的影响。通过基于状态依赖时滞的钻柱动力学稳定性分析,有助于控制或避免钻柱的自激振动,进而延长钻头使用寿命,提高机械钻速。
关键词: 钻头-岩石相互作用;状态依赖时滞;稳定性分析;粘滑振动;钻柱

Abstract

The bit-rock interaction introduces state-dependent delays in the rotary drilling systems, which cause the instability of the system and thus the self-excited vibrations of the drill string. These vibrations lead to the wear of drill bit as well as fatigue failure of the drill string and hence decrease the drilling efficiency. Therefore, stability analysis of the rotary drilling system helps to optimize the drilling parameters and bit design so as to reduce or eliminate the undesirable self-excited vibrations. In this paper, the state-dependent delay differential equations (SDDDEs) are derived with considering the torsional damping of drilling mud. The delay-related variable is reformulated via the introduction of the bit trajectory function, which transforms the SDDDEs into a system of nonlinear coupled partial differential equation (PDE) and ordinary differential equations (ODEs). The combination of spectral method and Galerkin method is utilized to analyze the linear stability of the coupled PDE-ODEs, which obtains the stability map of the system in the plane of drilling parameters. The fidelity of the proposed method is confirmed in comparison with the published results and the numerical simulation results. Finally, the effects of damping on the stability of the system are studied. The proposed numerical method in this paper could be extended to analyze the stability for a more generic lumped-parameter model with multiple degrees-of-freedom.
Key words  bit-rock interaction; state-dependent delay; stability analysis; stick-slip oscillation; drillstring

关键词

钻头-岩石相互作用 / 状态依赖时滞 / 稳定性分析 / 粘滑振动 / 钻柱

Key words

bit-rock interaction / state-dependent delay / stability analysis / stick-slip oscillation / drillstring

引用本文

导出引用
张鹤1,狄勤丰1,2,王文昌1,2,陈锋3,段浩宇1. 基于状态依赖时滞的钻柱动力学稳定性分析[J]. 振动与冲击, 2022, 41(22): 233-240
ZHANG He1,DI Qinfeng1,2,WANG Wenchang1,2,CHEN Feng3,DUAN Haoyu1. Numerical stability analysis of the rotary drilling system on the basis of state-dependent delay[J]. Journal of Vibration and Shock, 2022, 41(22): 233-240

参考文献

[1] 滕学清, 狄勤丰, 李宁, 等. 超深井钻柱粘滑振动特征的测量与分析[J]. 石油钻探技术,2017, 45(2): 32-39.
TENG Xueqing, DI Qinfeng, LI Ning, et al. Measurement and Analysis of Stick-slip Characteristics of Drill String in Ultra-Deep Wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32-39.
[2] 王文龙, 胡群爱, 刘化伟, 等. 钻柱纵向振动分析与应用[J]. 振动与冲击, 2011, 30(6): 229-233.
WANG Wenlong, Hu Qun ai, LIU Huawei, Zhang Wei. Analysis and application of longitudinal vibration of drill string[J]. Journal of Vibration and Shock, 2011, 30(6): 229-233.
[3] 田家林, 周思奇, 杨应林. 扭转振动工具滑模控制降黏分析[J]. 振动与冲击, 2020, 39(14): 186-193.
TIAN Jialin, ZHOU Siqi, YANG Yinglin. Viscosity reduction analysis of the sliding mode control of a drill string system with a torsional vibration tool[J]. Journal of Vibration and Shock, 2020, 39(14): 186-193.
[4] 祝效华 胡志强. 基于钻头破岩钻进的下部钻具横向振动特性研究[J]. 振动与冲击, 2014, 33(17): 90-93.
Zhu Xiaohua, Hu Zhiqiang. Analysis of lateral vibration characteristics of bottom hole assemblybased on the interaction between bit and rock[J]. Journal of Vibration and Shock, 2014, 33(17): 90-93.
[5] 刘永升, 高德利, 王镇全, 等. 斜直井眼中钻柱横向动态运动非线性模型研究[J]. 振动与冲击, 2017, 36(24): 1-6.
LIU Yongsheng, GAO Deli, WANG Zhenquan, et al. Nonlinear dynamic model of drill-string transverse motion in a deviated well[J]. Journal of Vibration and Shock, 2017, 36(24): 1-6.
[6] Kriesels P C, Keultjes W J G, Dumont P, et al. Cost savings through an integrated approach to drillstring vibration control[C]. SPE 57555, Proceedings of the SPE/IADC Middle East Drilling Technical Conference, Abu Dhabi, UAE, November 8-10, 1999.
[7] Henneuse H. Surface detection of vibrations and drilling optimization: field experience[C]. SPE 23888, Proceedings of the SPE/IADC Drilling Conference, New Orleans, February 18-21, 1992.
[8] Leine R I, Van Campen D H, Keultjes W J G. Stick-slip whirl interaction in drillstring dynamics[J]. Journal of Vibration and Acoustics, 2002, 124(2): 209-220.
[9] 刘清友, 马德坤, 钟青. 钻柱扭转振动模型的建立及求解[J]. 石油学报, 2000, 21(2): 78-82.
LIU Qinyou, MA Dekun, ZHONG Qing. A drilling string torsional vibration model and its solution [J]. Acta Petrolei Sinca, 2000, 21(2): 78-82.
[10] 李子丰, 张永贵, 侯绪田, 等. 钻柱纵向和扭转振动分析[J]. 工程力学, 2004, 21(6): 203-210.
LI Zifeng, ZHANG Yonggui, HOU Xutian, et al. Analysis of longitudinal and torsion vibration of drillstring [J]. Engineering Mechanics, 2004, 21(6): 203-210.
[11] Brett J F. The genesis of torsional drillstring vibrations[C]. SPE 21943, Proceedings of the SPE/IADC Drilling Conference, Amsterdam, 1991 March: 11–14.
[12] Navarro-Lopez E M, Cortes D. Avoiding harmful oscillations in a drillstring through dynamical analysis[J]. Journal of Sound and Vibration, 2007, 307: 152-171.
[13] Monteiro H L S, Trindade M A. Performance analysis of proportional-integral feedback control for the reduction of stick-slip-induced torsional vibrations in oil well drillstrings[J]. Journal of Sound and Vibration, 2017, 398: 28-38.
[14] 张晓东, 朱晓凤, 何石等. 钻柱系统粘滑振动稳定性分析及减振方法探讨[J]. 钻采工艺, 2015, (2): 89-90.(
ZHANG Xiaodong, ZHU Xiaofeng, HE Shi, et al. Stability analysis of stick-slip vibration and discussion of vibration reduction method of drill string system[J]. Drilling and Production Technology, 2015, (2): 89-90.
[15] 吕苗荣, 沈诗刚. 钻柱粘滑振动动力学研究[J]. 西南石油大学学报(自然科学版), 2014, 36(6): 150-159.
LV Miaorong, Shen Shigang. The simulation and analysis of drillstring stick-slip vibration[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(6): 150-159.
[16] Yigit A S, Christoforou A P. Coupled torsional and bending vibrations of actively controlled drillstrings[J]. Journal of Sound and Vibration, 2000, 234(1): 67-83.
[17] Tucker R W, Wang C. On effective control of torsional vibrations in drilling systems[J]. Journal of Sound and Vibration, 1999, 224: 101-122.
[18] Khulief Y A, Al-Naser H, Bashmal S. Vibration analysis of drillstrings with self-excited stick-slip oscillations[J]. Journal of Sound and Vibration, 2007, 299: 540-558.
[19] Ritto T G, Soize C, Sampaio R. Non-linear dynamics of a drill-string with uncertain model of the bit-rock interaction[J]. International Journal of Non-linear Mechanics, 2009, 44: 865-876.
[20] Nishimatsu Y. The mechanics of rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1972, 9(2), 261-270.
[21] Detournay E, Defourny P. A phenomenological model for the drilling action of drag bits[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts. Pergamon, 1992, 29(1), 13-23.
[22] Richard T, Germay C, Detournay E. A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits[J]. Journal of Sound and Vibration, 2007, 305, 432-456.
[23] Besselink B, van de Wouw N, Nijmeijer H. A semi-analytical study of stick-slip oscillations in drilling systems, Journal of Computational and Nonlinear Dynamics, 2011, 6, 02100–1.
[24] Nandakumar K. Wiercigroch M. Stability analysis of a state dependent delayed, coupled two DOF model of drill-string vibration, Journal of Sound and Vibration, 2013, 332, 2575-2592.
[25] Liu X, Vlajic N, Long X, Meng G, Balachandran B. Coupled axial-torsional dynamics in rotary drilling with state-dependent delay: stability and control, Nonlinear Dynamics, 2014, 78 (3), 1891–1906.
[26] Germay C, Denoël, Detournay E. Multiple mode analysis of the self-excited vibrations of rotary drilling systems, Journal of Sound and Vibration, 2009, 325, 362–381.
[27] Liu X, Vlajic N, Long X, Meng G, Balachandran B. State-dependent delay influenced drill-string oscillations and stability analysis, Journal of Vibration and Acoustics, 2014, 136 (5), 051008–051008–9.
[28] Aarsnes U J F, van de Wouw N. Dynamics of a distributed drill string system: Characteristic parameters and stability maps, Journal of Sound and Vibration, 2018, 417, 376–412.
[29] Aarsnes U J F, van de Wouw N. Axial and torsional self-excited vibrations of a distributed drill-string, Journal of Sound and Vibration, 2019, 444, 127–151.
[30] Yan Y, Wiercigroch M. Dynamics of rotary drilling with non-uniformly distributed blades[J]. International Journal of Mechanical Sciences, 2019, 160, 270–281.
[31] Tian K, Ganesh R, Detournay E. Influence of bit design on the stability of a rotary drilling system[J], Nonlinear Dynamics, 2020, 100, 51-57.
[32] Gupta S K, Wahi, P. Global axial-torsional dynamics during rotary drilling. Journal of Sound and Vibration, 2016, 375: 332-352.
[33] Wahi P, Chatterjee A. Self-interrupted regenerative metal cutting in turning[J]. International Journal of Non-Linear Mechanics, 2008, 43, 111-123.
[34] Zhang H, Detournay E. An alternative formulation for modeling self-excited oscillations of rotary drilling systems[J]. Journal of Sound and Vibration, 2020, 474, 115241.
[35] Depouhon A, Detournay E. Instability regimes and self-excited vibrations in deep drilling systems[J]. Journal of Sound and Vibration, 2014, 333, 2019-2039.
[36] Gupta S K, Wahi, P. Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling[J]. Journal of Sound and Vibration, 2018, 412, 457-473.
[37] 张鹤. 超深井钻柱振动激励机制及动力学特性分析[D]. 上海大学, 2019, 52-61.
ZHANG He. Research on the mechanism of vibration excitation and the drillstring dynamics in ultra-deep wells[D]. Shanghai University, 2019, 52-61.

PDF(2189 KB)

Accesses

Citation

Detail

段落导航
相关文章

/