复合材料板簧的模态预测与分析

刘鹤龙1,史文库1,高蕊2,陈志勇1,陈晃2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 246-252.

PDF(1206 KB)
PDF(1206 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 246-252.
论文

复合材料板簧的模态预测与分析

  • 刘鹤龙1,史文库1,高蕊2,陈志勇1,陈晃2
作者信息 +

Modal prediction and analysis of composite leaf springs

  • LIU Helong1, SHI Wenku1, GAO Rui2, CHEN Zhiyong1, CHEN Huang2
Author information +
文章历史 +

摘要

为了能够对复合材料板簧的模态特性进行高效、准确的预测,基于经典层合板理论和微元法,建立了复合材料板簧的模态预测模型,并试制了玻璃纤维/环氧复合材料板簧对模型进行了验证。结果表明,该方法能够快速准确的预测复合材料板簧的垂向弯曲模态,有利于缩短复合材料板簧的开发周期。从复合材料的选材、铺层设计等角度出发,利用该模型分析了相关设计参数对板簧一阶弯曲模态频率的影响。分析结果表明,选用弹性模量较大、密度较小的复合材料、同时尽量增加簧身宽度、选择0°铺层方向角能够降低板簧与外界激励共振的可能性。该模型也能够对纤维增强型复合材料梁结构的模态预测提供参考。
关键词:复合材料;板簧;模态预测;微元法;

Abstract

In order to effectively and accurately predict the modal characteristics of composite leaf springs, a modal prediction model of composite leaf springs was established based on the classical laminate theory and micro-element method. The samples of glass/epoxy leaf spring were manufactured to verify the model. Then the model was used to analyze the influence of relevant design parameters on the first-order bending modal frequency of composite leaf springs. The results show that the possibility of resonance between the composite leaf springs and the external excitation can be reduced by selecting composite materials with larger elastic modulus and lower density, increasing the width of the spring body as much as possible and selecting ply orientation angle of 0°. The model can also provide a reference for the modal prediction of fiber reinforced composite beam structures.
Key words: composite; leaf spring; modal prediction; micro-element method;

关键词

复合材料 / 板簧;模态预测;微元法;

Key words

composite / leaf spring / modal prediction / micro-element method;

引用本文

导出引用
刘鹤龙1,史文库1,高蕊2,陈志勇1,陈晃2. 复合材料板簧的模态预测与分析[J]. 振动与冲击, 2022, 41(22): 246-252
LIU Helong1, SHI Wenku1, GAO Rui2, CHEN Zhiyong1, CHEN Huang2. Modal prediction and analysis of composite leaf springs[J]. Journal of Vibration and Shock, 2022, 41(22): 246-252

参考文献

[1]. Sarfraz M S, Hong H, Kim S S. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study[J]. Composite Structures, 2021: 113864.
[2]. Talib A R A , Ali A , Badie M A , et al. Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft[J]. Materials & Design, 2010, 31(1):514-521.
[3]. Gheorghe V, Scutaru M L, Ungureanu V B, et al. New design of composite structures used in automotive engineering[J]. Symmetry, 2021, 13(3): 383.
[4]. Qian C, Shi W, Chen Z, et al. Fatigue reliability design of composite leaf springs based on ply scheme optimization[J]. Composite Structures, 2017, 168: 40-46.
[5]. Jamadar N I, Kivade S B, Pedada S R. Detection and Quantification of Crack in Composite Mono Leaf Spring by Vibration Parameters[J]. Journal of The Institution of Engineers (India): Series C, 2018, 99(5): 589-598.
[6]. Krall S, Zemann R. Investigation of the dynamic behaviour of CFRP leaf springs[J]. Procedia Engineering, 2015, 100: 646-655.
[7]. 许长生, 高诚辉, 彭育辉, 等. 复合材料板簧的优化设计及分析[J].农业装备与车辆工程, 2007(12):22-24.
XU C, GAO C, PENG Y, et al. Optimization and Analysis of a Composite Leaf Spring[J]. Agricultural Equipment & Vehicle Engineering, 2007, 12: 22-24.
[8]. Sureshkumar M, Tamilselvam P, Kumaravelan R, et al. Design, fabrication, and analysis of a hybrid FIBER composite monoleaf spring using carbon and E-glass fibers for automotive suspension applications[J]. Mechanics of Composite Materials, 2014, 50(1): 115-122.
[9]. Soliman E S M M. Static and Vibration Analysis of CFRP Composite Mono Leaf Spring[J]. Journal of Failure Analysis and Prevention, 2019, 19(1): 5-14.
[10]. 管鸣, 任勇生, 孙祥正. 基于 ANSYS 的形状记忆合金复合材料板簧的模态分析[J]. 山东科技大学学报: 自然科学版, 2013, 31(6): 106-112.
GUAN M, REN Y, SUN X. Modal Analysis of Composite Leaf Spring with SMA Based on ANSYS[J]. Journal of Shandong University of Science and Technology (Natural Science), 2013 ,31(6): 106-112.
[11]. 史文库, 钱琛, 柯俊, 等. 轻型客车复合材料板簧模态的预测和分析[J]. 振动与冲击, 2016, 35(24): 139-144.
Shi W, Qian C, Ke J, et al. Prediction and analysis for the modal of a composite leaf spring in a light bus[J]. Journal of Vibration and Shock, 2016, 35: 139-144.
[12]. 徐晓明, 任勇生, 杜向红. SMA纤维复合材料变截面板簧固有频率特性研究[J]. 振动与冲击, 2012,31(14):164-170.
Xu X M, Ren Y S, Du X H. Natural frequency of variable cross-section leaf spring made of SMA fiber composite material [J]. Journal of Vibration and Shock, 2012,31(14):164-170.
[13]. Jamadar N I, Kivade S B, Dhande K K, et al. Modal Strain Energy based Crack Inspection in Mono Composite Leaf Spring[J]. Journal of Failure Analysis and Prevention, 2021: 1-8.
[14]. Shokrieh M M, Rezaei D. Analysis and optimization of a composite leaf spring[J]. Composite Structures, 2003, 60(3):317-325.
[15]. 柯俊, 史文库, 钱琛, 等. 采用遗传算法的复合材料板簧多目标优化方法[J]. 西安交通大学学报, 2015, 49(8): 102-108.
Ke J, Shi W, Qian C, et al. A multi-objective optimization for composite leaf springs using genetic algorithms[J]. Journal of Xi'an Jiaotong University, 2015, 49: 102-108.
[16]. He X, Chen Q, Sun J, et al. Application of the Kirchhoff hypothesis to bending thin plates with different moduli in tension and compression[J]. Journal of Mechanics of Materials and Structures, 2010, 5(5): 755-769.

PDF(1206 KB)

1845

Accesses

0

Citation

Detail

段落导航
相关文章

/