基于疲劳损伤谱的地铁车辆设备安装座铝合金焊缝加速寿命研究

陈宽裕,阳光武,肖守讷,杨冰,朱涛,王举金

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 253-259.

PDF(1858 KB)
PDF(1858 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 253-259.
论文

基于疲劳损伤谱的地铁车辆设备安装座铝合金焊缝加速寿命研究

  • 陈宽裕,阳光武,肖守讷,杨冰,朱涛,王举金
作者信息 +

Accelerated life of aluminum alloy weld in the installation seat of ametro vehicle based on fatigue damage spectrum

  • CHEN Kuanyu, YANG Guangwu, XIAO Shoune, YANG Bing, ZHU Tao, WANG Jujin
Author information +
文章历史 +

摘要

以地铁底架设备安装座铝合金焊缝为研究对象,采集线路实际运行过程中的加速度激励,基于疲劳损伤谱(fatigue damage spectrum ,FDS)理论,提出一种非高斯激励的加速方法。首先计算实测输入信号的峭度、偏斜度,以此检验输入信号的非高斯分布特性,结果表明所有任务段激励均服从非高斯分布。为每个任务段激励选择合适的FDS计算方法,设置加速参数,基于损伤等效原则构建加速功率谱密度(power spectral density ,PSD),以此作为后续台架试验的激励输入。建立有限元模型,计算支架焊缝加速疲劳寿命。开展台架振动试验,进行验证。试验与仿真疲劳寿命进行对比,结果表明其加速疲劳寿命相对误差为0.57%,加速比达到21722.26,加速有效,该方法编制的加速PSD激励可以在5h内反映支架安装座30年的服役情况。为车辆其它设备加速谱的编制提供参考。
关键词:非高斯激励;疲劳损伤谱;加速疲劳试验;功率谱密度

Abstract

Taking the aluminum alloy weld of the installation seat of subway underframe as the research object, collecting the acceleration excitation during the actual operation of the line, and an acceleration method of non-Gaussian excitation is proposed based on the theory of fatigue damage spectrum (FDS). Firstly, the kurtosis and skewness of the measured input signals are calculated to verify the non-Gaussian distribution characteristics of the input signals. The results show that all the excitation in the task segment obey the non-Gaussian distribution. Appropriate FDS calculation methods were selected for each task segment excitation, and the acceleration parameters were set. The accelerated power spectral density (PSD) was constructed based on the damage equivalence principle, which was used as the excitation input of subsequent bench tests. Finite element model was established to calculate the accelerated fatigue life of bracket weld. The bench vibration test was carried out to verify. Comparing the fatigue life of the test and the simulation results and it shows that the relative error between the accelerated life and the design service life is 0.57%, and the acceleration ratio reaches 21722.26. The accelerated PSD incentive compiled by this method can reflect 30 years of service within 5 hours. At the same time, it provides a reference for the compilation of the acceleration spectrum of other equipment of the vehicle.
Key words: non-Gaussian excitation; fatigue damage spectrum; accelerated fatigue test; power spectral density

关键词

非高斯激励 / 疲劳损伤谱 / 加速疲劳试验 / 功率谱密度

Key words

non-Gaussian excitation / fatigue damage spectrum / accelerated fatigue test / power spectral density

引用本文

导出引用
陈宽裕,阳光武,肖守讷,杨冰,朱涛,王举金. 基于疲劳损伤谱的地铁车辆设备安装座铝合金焊缝加速寿命研究[J]. 振动与冲击, 2022, 41(22): 253-259
CHEN Kuanyu, YANG Guangwu, XIAO Shoune, YANG Bing, ZHU Tao, WANG Jujin. Accelerated life of aluminum alloy weld in the installation seat of ametro vehicle based on fatigue damage spectrum[J]. Journal of Vibration and Shock, 2022, 41(22): 253-259

参考文献

[1] Wolfsteiner P, Breuer W. Fatigue assessment of vibrating rail vehicle bogie components under non-Gaussian random excitations using power spectral densities[J]. Journal of Sound and Vibration, 2013, 332(22): 5867-5882.
[2] Angeli A, Cornelis B, Troncossi M. Synthesis of Sine-on-Random vibration profiles for accelerated life tests based on fatigue damage spectrum equivalence[J]. Mechanical Systems and Signal Processing, 2018, 103: 340-351.
[3] Kim H, Jang B S, Du Kim J. Fatigue-damage prediction for ship and offshore structures under wide-banded non-Gaussian random loadings part I: Approximation of cycle distribution in wide-banded gaussian random processes[J]. Applied Ocean Research, 2020, 101: 102294.
[4] 蒋瑜,陶俊勇,陈循.超高斯随机振动疲劳加速试验模型研究[J].振动与冲击,2017,36(09):261-266.
JIANG Yu, TAO Jun-yong, CHEN Xun. Super-Gaussian random vibration fatigue accelerated testing model [J]. Journal of Vibration and Shock, 2017, 36(09): 261-266.
[5] 程红伟. 非高斯随机载荷作用下结构疲劳寿命及可靠性研究[D].国防科学技术大学,2014.
CHEN Hong-wei. Research on the Fatigue Life and Reliability of Mechanical Structure under Non-Gaussian Random Loading [D]. National University of Defense Technology, 2014.
[6] 王得志,蒋瑜,陈循,等.基于MSC的非高斯随机振动疲劳仿真研究[J].武汉理工大学学报,2010,32(09):52-55+64.
WANG De-zhi, JIANG Yu, CHEN Xun, et al. Research on MSC-based Fatigue Simulation Under Non-gaussian Random Vibration [J]. Journal of Wuhan University of Technology, 2010,32(09):52-55+64.
[7] 高山. 海洋工程结构物的非高斯响应极值与疲劳研究[D].大连理工大学,2019.
GAO Shan. Non-Gaussian Response Extrema and Fatigue of Marine Structures [D]. Dalian University of Technology, 2019.
[8] 李向伟,方吉,李文全,等.重载货车车体疲劳台架试验技术研究[J].铁道学报,2021,43(04):33-41.
LI Xiang-wei, FANG Ji, LI Wen-quan, et al. Research on Fatigue Bench Test Technology for Heavy Haul Vehicle Body [J]. Journal of the China Railway Society, 2021, 43(04): 33-41.
[9] Wolfsteiner P, Trapp A. Fatigue life due to non-Gaussian excitation–An analysis of the Fatigue Damage Spectrum using Higher Order Spectra[J]. International Journal of Fatigue, 2019, 127: 203-216.
[10] Wen C, Xie B, Li Z, et al. Power density based fatigue load spectrum editing for accelerated durability testing for tractor front axles[J]. Biosystems Engineering, 2020, 200: 73-88.
[11] Cianetti F, Alvino A, Bolognini A, et al. On field durability tests of mechanical systems. The use of the Fatigue Damage Spectrum[J]. Procedia Structural Integrity, 2017, 3: 176-190.
[12] 李奇志,陈国平,王明旭,等.振动加速因子试验方法研究[J].振动.测试与诊断,2013,33(01):35-39+163.
LI Qi-zhi, CHEN Guo-ping, WANG Ming-xu, et al. Test Method of Vibration Acceleration Factor [J]. Journal of Vibration, Measurement & Diagnosis, 2013,33(01):35-39+163.
[13] 叶菲. 随机振动荷载下结构的疲劳寿命研究[D]. 天津: 天津大学,2017.
YE Fei. Research on Fatigue Life for Structures under Random Vibration Loading [D]. Tianjin: Tianjin University, 2017.
[14] 林晓斌.基于功率谱密度信号的疲劳寿命估计[J].中国机械工程,1998(11):20-23+2.
LIN Xiao-bin. Fatigue life estimation based on power spectral density signal [J]. China Mechanical Engineering, 1998(11): 20-23+2.
[15] LALANNE C. Mechanical Vibration and Shock Analysis, Specification Development[M]. John Wiley & Sons, 2013.
[16] SMALLWOOD D O. An improved recursive formula for calculating shock response spectra[J]. Shock and Vibration Bulletin, 1981, 51(2): 211-217.
[17] Steinwolf A, Wolfsteiner P. Vibration testing of vehicle components by fatigue damage spectrum control[J]. International Journal of Vehicle Noise and Vibration, 2019, 15(2-3): 133-153.
[18] 钟响亮. 多轴随机振动加速疲劳载荷谱编制方法研究[D]. 成都: 西南交通大学, 2017.
ZHONG Xiang-liang. Research on accelerated fatigue spectrum editing methods of multi-axial random vibration [D]. Chengdu: Southwest Jiaotong University, 2017.
[19] 程红伟,陶俊勇,蒋瑜,等.基于高斯混合模型的非高斯随机振动幅值概率密度函数[J].振动与冲击,2014,33(05):115-119.
CHENG Hong-wei, TAO Jun-yong, JIANG Yu, et al. Amplitude probability density functions for non-Gaussian random vibrations based on a Gaussian mixture model [J]. Journal of Vibration and Shock, 2014, 33(05): 115-119.
[20] 范文亮.平稳非高斯激励下线性结构响应统计量的高阶虚拟激励法[J].土木工程学报,2019,52(10):30-35.
FANG Wen-liang. Statistics analysis for response of linear structure under stationary non-Gaussian excitation based on the higher-order pseudo-excitation method [J]. China Civil Engineering Journal, 2019, 52(10): 30-35.

PDF(1858 KB)

Accesses

Citation

Detail

段落导航
相关文章

/