气动调节阀最优分数阶PID控制器设计

朱敏,臧昭宇,胥子豪,肖阳

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 267-274.

PDF(1649 KB)
PDF(1649 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 267-274.
论文

气动调节阀最优分数阶PID控制器设计

  • 朱敏,臧昭宇,胥子豪,肖阳
作者信息 +

Design of the optimal fractional order PID controller for a pneumatic control valve

  • ZHU Min, ZANG Zhaoyu, XU Zihao, XIAO Yang
Author information +
文章历史 +

摘要

针对工业控制过程气动调节阀阀位控制中非线性,模型不精确等问题,提出一种基于分数阶PID控制器 的阀位控制方法。分析气动调节阀工作原理并建立其数学模型,为提高模型准确性,针对分数阶PID控制器参数整定范围广、复杂性高等问题,提出一种改进量子粒子群算法(improved quantum particle swarm optimization ,IQPSO)整定分数阶PID控制器参数,引入混沌映射和非均匀高斯变异增强算法寻优能力,将改进算法用于调节阀控制系统模型辨识。仿真与实验结果表明,相比于整数阶PID控制器,所设计的分数阶PID具有更快的响应速度和控制精度,能更好的满足气动调节阀阀位控制要求。
关键词:气动调节阀;分数阶PID控制器;改进量子粒子群算法 ;参数整定

Abstract

Aiming at the problems of nonlinearity and inaccurate model in the valve position control of pneumatic control valve in industrial control process, a valve position control method based on Fractional Order PID controller  is proposed. The working principle of pneumatic control valve is analyzed and its mathematical model is established. In order to improve the accuracy of the model, Aiming at the characteristics of wide rang and high complexity,an improved quantum particle swarm optimization (IQPSO) algorithm is proposed to tune the parameters of the Fractional Order PID controller. Chaos mapping and non-uniform Gauss mutation are introduced to enhance the optimization ability of the algorithm, which is used for model identification of the control system of the control valve. The simulation and experimental results clearly demonstrated that compared with the integer order PID controller, the designed Fractional Order PID controller has faster response speed and control accuracy, and can better meet the requirements of pneumatic control valve position control.
    Key words:Pneumatic control valve; Fractional Order PID controller; Improved Quantum Particle Swarm Optimization algorithm; Parameters turning

关键词

气动调节阀 / 分数阶PID控制器 / 改进量子粒子群算法 / 参数整定

Key words

Pneumatic control valve / Fractional Order PID controller / Improved Quantum Particle Swarm Optimization algorithm / Parameters turning

引用本文

导出引用
朱敏,臧昭宇,胥子豪,肖阳. 气动调节阀最优分数阶PID控制器设计[J]. 振动与冲击, 2022, 41(22): 267-274
ZHU Min, ZANG Zhaoyu, XU Zihao, XIAO Yang. Design of the optimal fractional order PID controller for a pneumatic control valve[J]. Journal of Vibration and Shock, 2022, 41(22): 267-274

参考文献

[1] Goyal V, Mishra P, Deolia V K. A robust fractional order parallel control structure for flow control using a pneumatic control valve with nonlinear and uncertain dynamics[J]. Arabian Journal for Science and Engineering, 2019, 44(3): 2597-2611.
[2] 钱锦远,吴嘉懿,金志江.调节阀振动特征的研究进展[J].振动与冲击,2020,39(11):1-13+21.
QIAN Jinyuan,WU Jiayi,JIN Zhijiang. Research progress on vibration characteristics of regulation valve[J].Journal of Vibration and Shock,2020,39(11):1-13+21.
[3] Schmitt R, Sobrinho M R S. Nonlinear dynamic modeling of a pneumatic process control valve[J]. IEEE Latin America Transactions, 2018, 16(4): 1070-1075.
[4] Plestan F, Shtessel Y, Brégeault V, et al. Sliding mode control with gain adaptation—Application to an electropneumatic actuator[J]. Control Engineering Practice, 2013, 21(5): 679-688.
[5] Zabiri H, Samyudia Y. A hybrid formulation and design of model predictive control for systems under actuator saturation and backlash[J]. Journal of Process Control, 2006, 16(7): 693-709.
[6] Guo W, Zhao Y, Li R, et al. Active Disturbance Rejection Control of Valve-Controlled Cylinder Servo Systems Based on MATLAB-AMESim Cosimulation[J]. Complexity, 2020.
[7] 吴朋,时光,聂绍忠.仿人智能控制在智能电-气阀门定位器中的应用[J].仪器仪表学报,2009,30(09):1930-1934.
Wu Peng,SHI Guang,NIE Shaozhong.Application of human-simulated intelligentcontrol in smart electro-pneumatic valve positioner[J].Chinese Journal of Scientific Instrument,2009,30 (9) :1930-1934.
[8] 朱天宇,董全林,刘日.模糊神经网络在阀门开度控制中的应用[J].仪表技术与传感器,2019(02):94-98+103.
ZHU Tianyu,DONG Quanlin,LIU Ri.Application of Fuzzy Neural Network in Valve Opening Control[J]. Instrument Technique and Sensor,2019(02):94-98+103.
[9] Jeremiah S, Narayanasamy A, Zabiri H, et al. Analysis of constraint modification in model-based control valve stiction compensation[J]. Jurnal Teknologi, 2017, 79(7).
[10] 刘晔,王笑波,王昕.一类基于Expert-PID的智能阀门定位器控制方法[J].控制工程,2019,26(01):87-91.
LIU Ye,WANG Xiaobo,WANG Xin. A Type of Control Method Based on Expert PID for Intelligent Valve
Positioner[J].Control Engineering of China,2019,26(01):87-91.
[11] 戚壮,张文莲,王美琪,等.分数阶PID扭矩控制在边驱耦合轻轨车辆的应用研究[J].自动化学报,2020,46(03):482-494.
QI Zhuang,ZHANG Wenlian,WANG Meiqi,et al.Study for the Application of Fractional Order PID Torque Control in Side-drive Coupled Tram[J].Acta Automatica Sinica, 2020,46(03):482-494.
[12] Asgharnia A,Jamali A,Shahnazi R,et al. Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller[J]. ISA transactions, 2020, 96: 272-286.
[13] L Chen, G Chen, R Wu, et al. Variable coefficient fractional-order PID controller and its application to a SEPIC device[J]. IET Control Theory & Applications, 2020, 14(6): 900-908.
[14] F Meng, S Liu, K Liu. Design of an optimal fractional order PID for constant tension control system[J]. IEEE Access, 2020, 8: 58933-58939.
[15] 张邦楚,王少锋,韩子鹏,等.飞航导弹分数阶PID控制及其数字实现[J].宇航学报,2005,26(5):653-657.
ZHANG Bangchu,WANG Shaofeng,HAN Zipeng,et al. Using Fractional-order PID Controller for Control of Aerodynamic Missile[J].Journal of Astronautics,2005,26(5):653-657.
[16] 聂卓赟,朱海燕,刘建聪等.基于理想Bode传递函数的分数阶PID频域设计方法及其应用[J].控制与决策,2019,34(10):2198-2202.
NIE Zhuoyun,ZHU Haiyan,LIU Jiancong,et al.Fractional order PID controller design in frequency domain based on ideal Bode transfer function and its application[J].Control and Decision,2019,34(10):2198-2202.
[17] Mohanty D, Panda S. Modified salp swarm algorithm-optimized fractional-order adaptive fuzzy PID controller for frequency regulation of hybrid power system with electric vehicle[J]. Journal of Control, Automation and Electrical Systems, 2021, 32(2): 416-438.
[18] Bučanović L J, Lazarević M P, Batalov S N. The fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process[J]. Hemijska industrija, 2014, 68(5): 519-528.
[19] Pires E J S, Machado J A T, de Moura Oliveira P B, et al. Particle swarm optimization with fractional-order velocity[J]. Nonlinear Dynamics, 2010, 61(1): 295-301.
[20] Omkar S N, Khandelwal R, Ananth T V S, et al. Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures[J]. Expert Systems with Applications, 2009, 36(8): 11312-11322.
[21] Sun J, Xu W, Feng B. A global search strategy of quantum-behaved particle swarm optimization[C]//IEEE Conference on Cybernetics and Intelligent Systems, 2004. IEEE, 2004, 1: 111-116.
[22] Zhao X, Gao X S, Hu Z C. Evolutionary programming based on non-uniform mutation[J]. Applied mathematics and computation, 2007, 192(1): 1-11.
[23] Li R, Meng G, Feng Z, et al. A sliding mode variable structure control approach for a pneumatic force servo system[C]//2006 6th World Congress on Intelligent Control and Automation. IEEE, 2006, 2: 8173-8177.

PDF(1649 KB)

446

Accesses

0

Citation

Detail

段落导航
相关文章

/