为探索弹箭系统内轻质元件多次高g值冲击防护结构设计理论和优化方法,基于数值模拟、实验和理论分析,研究了三次高g值脉冲和恒速冲击加载下复合泡沫填充壳的动力响应,结合多目标优化对幅值40000g、脉宽250μs三次半正弦高g值冲击防护结构进行设计,结果表明:(1)当加载速率为高g值冲击压缩平均速率时,恒速冲击下填充壳能量吸收曲线与多次高g值冲击时一致;(2)泡沫与管壁耦合效应约为填充壳总载荷的10~24%,构建的填充壳平均压溃力模型与实验结果一致,可为高g值冲击下目标响应加速度预测和参数设计提供理论依据;(3)理想点法和非支配排序遗传算法(NSGA II)均适用于多次高g值缓冲结构的优化,但理想点法所得结果与各目标权重系数有关,NSGA II提供的最优解集更适于结合其他防护需求进行择优设计。当设计响应加速度为12000g时,考虑结构响应加速度幅值和比吸能的多目标优化结构参数为壳体壁厚1.58mm,复合泡沫相对密度0.27。
关键词:高g值冲击;复合泡沫;能量吸收;多目标优化
Abstract
In order to explore the theoretical and optimization methods of structure design for multiple high g impact protection of lightweight devices in projectile system, numerical simulation, experimental verification and theoretical analysis were performed on dynamic response of novel syntactic foam filled shells subjected to constant velocity compression and multiple high g shocks. Based on multi-objective optimization technology, optimum structural design was carried out for cylindrical foam-filled shells loaded by three high g shocks, where the amplitude and pulse width of the half-sine excitation acceleration are 40000g and 250μs. Results show that, (1) when the impact velocity equals to the average compression velocity during high g shocks, the structural energy absorbing behaviors are same. (2) The force contribution of foam/shell interaction is 10~24% of the total crushing force. The established theoretical model of the average crushing force shows good accordance with the numerical simulations, and can provide theoretical basis for predicting the response acceleration and parameter design under multiple high g shocks. But the predicted acceleration value is lower than the actual response acceleration amplitude in general. (3) The ideal point method (IPM) and non-dominated sorting genetic algorithm (NSGA II) are both applicative for structure optimization of high g shock protection, but the results of IPM is significantly dependent on the weight coefficient of individual objective. The Pareto frontier of NSGA II is larger than that of IPM, and is more suitable for the optimal design combined with the other requirements such as the stability of the response acceleration. When the design response acceleration is 12000g, considering the amplitude of response acceleration and the specific energy absorption as the optimization objectives, the optimized shell thickness and the relative density of syntactic foam are 1.58mm and 0.27.
Keywords: High g shock; syntactic foam; energy absorption; multi-objective optimization
关键词
高g值冲击 /
复合泡沫 /
能量吸收 /
多目标优化
{{custom_keyword}} /
Key words
High g shock /
syntactic foam /
energy absorption /
multi-objective optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐鹏,祖静,范锦彪. 高g值加速度冲击试验技术研究[J].振动与冲击, 2011,30(4):241-243.
XU Peng, ZU Jing, FAN Jinbiao. The high G acceleration shock experiment technology [J]. Journal of Vibration and Shock, 2011,30(4):241-243.
[2] 徐鹏,赵玉杰,朱江涛.高g值冲击下变截面填充壳缓冲性能优化方法[J].探测与控制学报, 2018,40(1):88-93.
XU Peng, ZHAO Yujie, ZHU Jiangtao. High g crashworthiness optimization method for variable cross-section filled thin-walled structures [J]. Journal of Detection and Control, 2018,40(1):88-93.
[3] 徐鹏,高猛. 高g值冲击下泡沫铝填充壳结构抗冲击性能多目标优化[J]. 应用力学报, 2016,33(5):845-851.
XU Peng, GAO Meng. Multiobjective crashworthiness optimization for foam-filled thin-walled structures subjected to high g value impact [J]. Chinese Journal of Applied Mechanics, 2016,33(5):845-851.
[4] 张冰冰. 漂珠聚氨酯复合泡沫制备及其高g值安全防护动力响应研究[D]. 太原:中北大学,2019.
[5] FAN Z, MIAO Y, WANG Z, et al. Effect of the cenospheres size and internally lateral constraints on dynamic compressive behavior of fly ash cenospheres polyurethane syntactic foams [J]. Composites Part B-Engineering, 2019, 171: 329-338.
[6] 王壮壮,徐鹏,范志强,等. 粉煤灰聚氨酯复合泡沫静动态力学特性实验研究[J]. 振动与冲击, 2020, 39(4): 229-235.
WANG Zhuangzhuang, XU Peng, FAN Zhiqiang, et al. An experimental study on mecha -nical characteristics of fly ash cenosphere/polyurethane syntactic foam under quasi-static and dynamic compression [J]. Journal of Vibration and Shock, 2020,39(4):229-235.
[7] 赵寿根,何著,杨嘉陵,程伟.几种航空铝材动态力学性能实验[J]. 北京航空航天大学学报, 2007,33(8):982-985.
ZHAO Shougen, HE Zhu, YANG Jialing, CHENG Wei. Experiment investigation of dynamic material property of aluminum alloy [J]. Journal of Beijing University of Aeronautics and Astronautics, 2007,33(8):982-985.
[8] HANSSEN AG, LANGSETH M, HOPPERSTAD OS. Static and dynamic crushing of circular aluminum extrusions with aluminum foam filler [J]. International Journal of Impact Engineering, 2000, 24(5):475-507.
[9] WIERZBICKI T. Optimum design of integrated front panel against crash: Report for Ford Motor Company [R]. USA: Vehicle Component Department, 1983.
[10] ABRAMOWICZ W, JONES N. Dynamic progressive buckling of circular and square tubes [J]. International Journal of Impact Engineering, 1986, 4(4):243-270.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}