大行程柔顺对称缓冲机构设计与分析

刘华,翟小飞,张晓,彭之然,杨帆

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 42-50.

PDF(2023 KB)
PDF(2023 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 42-50.
论文

大行程柔顺对称缓冲机构设计与分析

  • 刘华,翟小飞,张晓,彭之然,杨帆
作者信息 +

Design and analysis of a compliant buffer with symmetric layout and large travel

  • LIU Hua,ZHAI Xiaofei,ZHANG Xiao,PENG Zhiran,YANG Fan
Author information +
文章历史 +

摘要

针对传统缓冲机构结构相对复杂、体积重量较大的不足,面向小口径电磁发射武器对称缓冲、大垂向负载的需求,本文提出了一种柔顺梁竖直布置、柔顺机构左右对称布局的缓冲器与摇架一体化设计的柔顺对称缓冲机构,分析了缓冲机构中柔顺直线导向机构的刚度、行程以及垂向承载能力等参数,并进行了仿真验证与静动态实验测试,柔顺对称缓冲机构的刚度为892.82N/mm,行程为±7mm,垂向承载能力可达12400N,之后进行了实弹射击测试,测试结果表明缓冲机构最大后坐位移为5.12mm,经缓冲后的最大冲击传递力为4743.7N,有效降低了后坐冲击,达到了缓冲机构设计目标。
关键词:缓冲机构;柔顺直线导向机构;对称布局;刚度分析;冲击传递力;

Abstract

Since most of conventional buffering mechanisms suffer from relatively complex and bulky structure, this paper proposes a novel large travel cradle-buffer integrated-designed compliant buffer with vertical straight leaf spring and symmetric layout aiming to meet the symmetric buffering and high out-of-plane payload requirements of the small calibrator railgun. The key parameters such as stiffness, travel and out-of-plane payload of the linear guide compliant mechanism (LGCM) is analyzed. The analytical model is confirmed by finite element simulation and experiments. It is noted that the developed LGCM is capable of ±7mm buffering traveling with an 892.82N/mm working stiffness, and the out-of-plane payload of the LGCM is greater than 12400N. Furthermore, dynamic firing tests are carried out to investigate the buffering characteristics of the symmetric compliant buffer (SCB). The experimental results show that the maximum recoil displacement of the SCB is 5.12mm and the maximum buffered recoil force is about 4743.7N, which reduce the recoil shock dramatically and meet the buffer design goal.
Key words: buffering mechanism; linear-guided compliant mechanism(LGCM); symmetric layout; stiffness analysis; transmitted shock;

关键词

缓冲机构 / 柔顺直线导向机构 / 对称布局 / 刚度分析 / 冲击传递力

Key words

buffering mechanism / linear-guided compliant mechanism(LGCM) / symmetric layout / stiffness analysis / transmitted shock;

引用本文

导出引用
刘华,翟小飞,张晓,彭之然,杨帆. 大行程柔顺对称缓冲机构设计与分析[J]. 振动与冲击, 2022, 41(22): 42-50
LIU Hua,ZHAI Xiaofei,ZHANG Xiao,PENG Zhiran,YANG Fan. Design and analysis of a compliant buffer with symmetric layout and large travel[J]. Journal of Vibration and Shock, 2022, 41(22): 42-50

参考文献

[1] HOWELL L L. Compliant Mechanisms [M]. New York: John Wiley & Sons, Inc., 2001.
[2] Smith S T. Flexures: Elements of Elastic Mechanisms [M]. New York: Gordon and Breach Science Publishers, 2000.
[3] HOWELL L L, MAGLEBY S P, OLSEN B M. Handbook of Compliant Mechanisms [M]. New York: John Wiley & Sons Ltd., 2013.
[4] ZHOU Qing-kun, ZHANG Zhi-yong, FAN Da-peng, Hong Hua-jie. Transverse Stiffness and Guiding Characteristics Analysis of Compliant Linear Guided Mechanism[J]. Applied Mechanics and Materials, 2010, 34-35:1941-1945.
[5] ZHOU Qing-kun, ZHANG Zhi-yong, FAN Da-peng. Development of a Novel Large Travel Compliant Buffer Mechanism[J]. Journal of Advanced Science Letters, 2011, 4(6):2028-2031.
[6] 周擎坤. 柔顺直线导向机构与缓冲机构设计问题研究 [D]. 长沙:国防科技大学,2011.
ZHOU Qing-kun. Research on Design Method of a Novel Compliant Linear-Motion and Buffer Mechanisms [D]. Changsha: National University of Defense Technology, 2011
[7] 崔庆龙. 柔顺缓冲摇架的分析与设计方法研究 [D]. 长沙:国防科技大学,2015.
CUI Qing-long. Research on analysis and design method of compliant buffer cradle [D]. Changsha: National University of Defense Technology, 2015.
[8] HAO Guang-bo, KONG Xian-wen. A novel large-range XY compliant parallel manipulator with enhanced out-of-plane stiffness. [J]. Journal of Mechanical Design, 2012, 134:61009.
[9] LIU Hua, XIE Xin, TAN Ruo-yu, et al. Compact design of a novel linear compliant positioning stage with high out-of-plane payload and large travel [J]. Proc IMechE Part C: J. Mechanical Engineering Science. 2018, Vol.233(12) 2265-2279.
[10] LIU Hua, FAN Shi-xun, XIE Xin, et al. Design and modeling of a novel monolithic parallel XY stage with centimeters travel range [J] Advances in Mechanical Engineering, 2017, Vol.9(11) 1-17.
[11] 鲁军勇,马伟明. 电磁轨道发射理论与技术[M].北京:科学出版社,2020.
LU Junyong, MA Weiming. Electromagnetic rail launch theory and technology[M]. Beijing: Science and Technology Press, 2020.
[12] 石江波,栗保明. 电磁轨道炮后坐过程研究[J]. 兵工学报,2015, 36(2): 227-233.
SHI Jiangbo, LI Baoming. Research on Recoil Process of Electromagnetic Railgun[J]. ACTA ARMAMENTARII, 2015, 36(2): 227-233.
[13] 邱群先,马新科,何行,高博. 电磁轨道炮后坐诸元与反后坐装置设计[J]. 舰船科学技术,2019, 42(2): 151-153;
QIU Qunxian, MA Xinke, He Hang, GAO Bo. Research on recoil data and anti-recoil mechanism design of electromagnetic railgun[J].SHIP SCIENCE AND TECHNOLOGY, 2019, 41(2): 151-153.
[14] 马新科,邱群先,何行,等. 螺栓紧固式轨道炮后坐规律研究[J]. 兵工学报,2019, 40(6):1297-1303.
MA Xinke, QIU Qunxian, HE Hang, et al. Research on recoil law of bolt-fastened railgun [J]. ACTA ARMAMENTARII, 2019, 40(6): 1297-1303.
[15] David R. Sadedin. Conservation of momentum and recoil in the railgun [J]. IEEE TRANSACTIONS ON MAGNETICS, 1997, 33(1): 599-603.
[16] Wm. F. Weldon, M. D. Driga, H. H. Woodson. Recoil in  Electromagnetic Railguns [J]. IEEE TRANSACTIONSON MAGNETICS, 1986, 22(6): 1808-1811.
[17] 成大先 机械设计手册 第四卷 [M]. 第六版,北京:化学工业出版社,2016.
CHENG Daxian. Handbook of Mechanical Design Vol.4 [M]. 6th ed, Beijing: Chemical Industry Press, 2016.
[18] Norton R. L. Machine Design: An Integrated Approach [M]. 4th ed, New York: Pearson Education Asia LTD. , 2010.
[19] 朱秘,余淼,浮洁,等. 基于磁流变弹性体的缓冲装置设计及其冲击响应特性研究[J]. 振动与冲击,2017,36(4): 172-177.
An experimental study on shock response characteristics of magnetorheological elastomer-based buffer [J]. Journal of Vibration and Shock, 2017, 36(4): 172-177.
[20] 王楠楠,刘宁,沈艳萍,孙明亮. 冲击载荷下圆筒型电涡流阻尼器动力特性研究[J]. 振动与冲击,2021, 40(11):65-69.
WANG Nannan, LIU Ning, SHEN Yanping, SUN Mingliang. Dynamic characteristics of cylindrical eddy current  damper under impact load [J]. Journal of Vibration and Shock, 2021, 40(11): 65-69.
[21] 张广,汪辉兴,王炅. 磁流变阻尼器对火炮后坐炮膛时期阻尼特性分析[J]. 振动与冲击,2019, 38(40):172-180.
ZHANG Guang, WANG Huixing, WANG Jiong. Analysis of Damping Characteristics of Magnetorheological Damper for the Artillery Recoil during Bore Period [J]. Journal of Vibration and Shock, 2019, 38(40): 172-180.

PDF(2023 KB)

284

Accesses

0

Citation

Detail

段落导航
相关文章

/