基于Duffing系统的微弱超声导波幅值检测方法研究

闫晓鹏1,成梦菲2,张伟伟3,武静3,马宏伟3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 78-83.

PDF(1202 KB)
PDF(1202 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 78-83.
论文

基于Duffing系统的微弱超声导波幅值检测方法研究

  • 闫晓鹏1,成梦菲2,张伟伟3,武静3,马宏伟3
作者信息 +

Amplitude detection method for the weak ultrasonic guided wave based on Duffing system chaotic characteristics

  • YAN Xiaopeng1,CHENG Mengfei2,ZHANG Weiwei3,WU Jing3,MA Hongwei3
Author information +
文章历史 +

摘要

针对超声导波检测小缺陷时,缺陷回波能量微弱,幅值难以准确识别的问题,提出了一种基于Duffing系统混沌相变特性的检测方法,重点分析了超声导波周期数对等价驱动力幅值的影响,给出了等价驱动力改变量与导波幅值之间的量化关系。首先,通过分岔分析获得了Duffing系统的混沌阈值,详细介绍了基于混沌相变特性的幅值检测方法;然后,通过仿真研究验证了检测方法的可靠性;最后,开展了含缺陷管道的超声导波检测实验研究,利用本文方法检测了缺陷回波幅值,并将检测结果与理论值进行对比,结果表明,本文方法具有较强的噪声免疫性与弱信号敏感性,最小可以识别截面损失率为6.4%的小缺陷回波幅值,最大相对误差仅为-7.31%,这对于在强噪声干扰的背景下评估缺陷大小具有重要意义。
关键字:超声导波;幅值检测;Duffing系统;混沌

Abstract

When ultrasonic guided wave is used to detect small defects, the echo energy of defects is weak and the amplitude is difficult to identify accurately. A detection method based on the chaotic phase transition characteristics of Duffing system is proposed. The influence of the period number of ultrasonic guided wave on the driving force amplitude of Duffing system is analyzed, and the quantitative relationship between the driving force amplitude and the guided wave amplitude is given. First, the chaos threshold of the Duffing system is obtained by bifurcation analysis, and the amplitude detection method based on the chaotic phase transition characteristics is introduced in detail; Then, the reliability of the detection method is verified by simulation; Finally, the experimental research on ultrasonic guided wave detection of defective pipeline is carried out. The test results are compared with the theoretical values. The results show that the proposed method has strong noise immunity and weak signal sensitivity. The minimum identifiable section loss rate is 6.4%, and the maximum relative error is 7.31%, which is of great significance for evaluating the size of defects under the background of strong noise interference.
Key words: ultrasonic guided wave; detection of amplitude; Duffing system; chaos

关键词

超声导波
/ 幅值检测 / Duffing系统 / 混沌

Key words

ultrasonic guided wave
/ detection of amplitude / Duffing system / chaos

引用本文

导出引用
闫晓鹏1,成梦菲2,张伟伟3,武静3,马宏伟3. 基于Duffing系统的微弱超声导波幅值检测方法研究[J]. 振动与冲击, 2022, 41(22): 78-83
YAN Xiaopeng1,CHENG Mengfei2,ZHANG Weiwei3,WU Jing3,MA Hongwei3. Amplitude detection method for the weak ultrasonic guided wave based on Duffing system chaotic characteristics[J]. Journal of Vibration and Shock, 2022, 41(22): 78-83

参考文献

[1] Yan F, Royer R L, Rose J L. Ultrasonic Guided Wave Imaging Techniques in Structural Health Monitoring[J]. Journal of Intelligent Material Systems & Structures, 2008, 21(3):377-384.
[2] 程载斌, 王志华, 马宏伟. 管道应力波检测技术及研究进展[J]. 太原理工大学学报, 2003, 034(004):426-431.
CHENG Zaibin, WANG Zhihua,MA Hongwei. A brief review on damage detection in pipes using stress wave factor technique[J]. Journal of Taiyuan University of Technology, 2003, 034(004):426-431.
[3] Cheong Y M, Lee D H, Jung H K. Ultrasonic guided wave parameters for detection of axial cracks in feeder pipes of PHWR nuclear power plants[J]. Ultrasonics, 2004, 42(1-9):883-888.
[4] Lee J, Na W B, Shin S W, et al. Parametric Density Concept for Guided Wave Attenuation Calculation in Fluid-Filled and Buried Steel Pipes[J]. Journal of Computational & Theoretical Nanoence, 2011, 4(4):1702-1705.
[5] Birx D L, Pipenberg S J. Chaotic oscillators and complex mapping feed forward networks (CMFFNs) for signal detection in noisy environments[C]// International Joint Conference on Neural Networks, Ijcnn. IEEE, 1992,2:881-888.
[6] 张淑清,姜万录,王玉田.强噪声中弱信号检测的混沌方法及超声系统的实现[J].电子测量与仪器学报,2001,15(2):11-16.
ZHANG Shu-qing,JIANG Wan-lu,WANG Yu-tian.Chaos theory for weak signal detection in high noise environment and its application in ultrasonic wave detection[J].Journal of Electronic Measurement and Instrument,2001,15(2):11-16.
[7] 邹珺,武新军,徐江.基于杜芬混沌振子的磁致伸缩导波信号识别[J].无损检测,2008,30(9):600-602.
ZOU Jun,WU Xin-jun,XU Jiang,et al.Identification of magnetostrictive guided wave signal based on Duffing chaotic oscillators[J]. Nondestructive Testing,2008,30(9):600-602.
[8] 张伟伟,武静,马宏伟.基于Lyapunov指数的超声导波检测技术[J].振动.测试与诊断,2015,35(02):250-257+396-397.
ZHANG Wei-wei,WU Jing,MA Hong-wei.Ultrasonic guided wave Inspection method based on Lyapunov exponents[J].Journal of Vibration,Measurement & Diagnosis,2015,35(02):250-257+396-397.
[9] 武静, 张伟伟, 聂振华,等. 基于Lyapunov指数的管道超声导波小缺陷定位实验研究[J]. 振动与冲击, 2016, 035(001):40-45,53.
WU Jing,ZHANG Wei-wei,Nie Zhen-Hua, et al. Tests for detecting crack locations in a pipe with ultrasonic guided wave based on Lyapunov exponent[J]. Journal of Vibration and Shock, 2016, 035(001):40-45,53.
[10] 武静,张伟伟,马宏伟.利用Lyapunov指数实现超声导波检测的实验研究[J].振动与冲击,2014,33(24):82-87.
WU Jing,ZHANG Wei-wei,MA Hong-wei.Experimental studies on ultrasonic guided wave inspection using Lyapunov exponents[J]. Journal of Vibration and Shock,2014,33(24):82-87.
[11] 温宇立, 武静, 林荣, 等.基于相轨迹的多裂纹管道超声导波检测研究. 振动与冲击, 2017, 036(023):114-122.
    WEN Yuli, WU Jing, LIN Rong,et a1.Multi-crack detection in pipes using ultrasonic guided wave based on phase trajectories[J]. Journal of Vibration and Shock, 2017, 036(023):114-122.
[12] 温宇立, 武静, 林荣,等. 基于Lorenz系统Lyapunov指数的管道超声导波检测. 振动与冲击, 2019; (11):264-270.
WEN Yuli, WU Jing, LIN Rong,et a1.Ultrasonic guided wave detection in a pipeline based on Lyapunov exponent of Lorenz system [J]. Journal of Vibration and Shock, 2019; (11):264-270.
[13] SHEN Liqun,WANG Pei,LIU Wangyu,et a1.The application of Melnikov function in weak signal detection with Duffing oscillators[C].Proceedings of IEEE Conference on Intelligent Control and Information Processing,Harbin,China,2011:854—858.
[14] JIN Tian, ZHANG Hua. Statistical approach to weak signal detection and estimation using Duffing chaotic oscillators[J]. science China (Information sciences), 2011(11):2324-2337.
[15] Wang Yongsheng , Jiang Wenzhi , Zhao Jianjun , et al. A new method of weak signal detection using Duffing oscillator and its simulation research[J]. Acta Physica Sinica, 2008, 57(4).
[16] 周玲,田建生, 刘铁军. Duffing混沌振子用于微弱信号检测的研究[J]. 系统工程与电子技术, 2006, 28(010):1477-1479.
    ZHOU Ling, TIAN Jiansheng, LIU Tiejun. Study on the weak sinusoidal signal detection with Duffing chaotic oscillator[J]. Systems Engineering and Electronics, 2006, 28(010):1477-1479.
[17] WANG Guanyu, CHEN Dajun. The application of chaotic oscillators to weak signal detection[J]. IEEE Transactions on Industrial Electronics, 1999, 46(2): P.440-444.
[18] WANG Guanyu, He S . A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators[J]. IEEE Transactions on Circuits & Systems I Fundamental Theory & Applications, 2003, 50(7):945-953.
[19] 李亚峻,李月.用Melnikov函数的数值积分法估计混沌阈值[J].系统仿真学报, 2004(12):2692-2695.
Li Yajun, Li Yue. Estimate of Chaotic Threshold by Numerical Integral Method of Melnikov Function[J]. Journal of System Simulation, 2004(12):2692-2695.
[20] 谢涛,于重重,伍英,吴叶兰.阵发混沌信号稳定输出及其准确测量研究[J].计算机仿真,2015,32(08):271-275.
    XIE Tao, YU Chongchong, WU Yelan. Study on Stable Output of Intermittent Chaotic Signal and Accurate Measurement Thereof[J]. Computer Integrated Manufacturing Systems, 2015,32(08):271-275.

PDF(1202 KB)

1056

Accesses

0

Citation

Detail

段落导航
相关文章

/