高速列车抗蛇行减振器实时混合试验方法研究

窦晓亮1,张宝安1,郑欢2,李海涛1,黄超1,王贞3,王涛2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 99-104.

PDF(1105 KB)
PDF(1105 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (22) : 99-104.
论文

高速列车抗蛇行减振器实时混合试验方法研究

  • 窦晓亮1,张宝安1,郑欢2,李海涛1,黄超1,王贞3,王涛2
作者信息 +

Real-time hybrid test method for hunting dampers of high-speed vehicles

  • DOU Xiaoliang1,ZHANG Baoan1,ZHENG Huan2,LI Haitao1,HUANG Chao1,WANG Zhen3,WANG Tao2
Author information +
文章历史 +

摘要

为对高速列车减振器开展低沉本、高精度的试验研究,开展了高速列车抗蛇行减振器实时混合试验方法研究。取抗蛇行减振器为试件并物理加载,取车辆动力学系统其余部分来数值模拟,通过实时计算、实时加载来共同完成动力试验。研究了加载系统时滞对试验结果的影响,比较了常速度时滞补偿方法和自适应时滞补偿方法的补偿效果。结果表明:对该方法而言,时滞补偿很有必要;相较于常速度的时滞补偿方法,自适应时滞补偿方法具有更好的补偿效果。该研究可为高速列车减振器动态性能分析以及列车抗蛇行性能评估提供试验方法支撑。
关键词:实时混合试验;抗蛇行减振器;时滞补偿;临界速度

Abstract

In order to carry out low-cost and high-precision experimental research on dampers of high-speed vehicles, a real-time hybrid test method of hunting dampers was conceived. The hunting damper is taken as the specimen and physically tested, while the rest of the vehicle dynamic system is numerically simulated. Through real-time calculation and real-time loading on the specimen, the original dynamic system is recovered. The impact of the loading system time delay on test results was studied, and effects of the delay compensation method with a constant speed assumption and an adaptive compensation method were compared. The results show that the time-delay compensation is necessary for this method. The adaptive time delay compensation method exhibits better compensation effect than the other one. This research can provide testing methods for the dynamic performance analysis of hunting dampers and evaluation of the hunting performance of high-speed vehicles.
Key words: real-time hybrid test; hunting damper; time delay compensation; critical speed

关键词

实时混合试验 / 抗蛇行减振器 / 时滞补偿 / 临界速度

Key words

 real-time hybrid test / hunting damper / time delay compensation / critical speed

引用本文

导出引用
窦晓亮1,张宝安1,郑欢2,李海涛1,黄超1,王贞3,王涛2. 高速列车抗蛇行减振器实时混合试验方法研究[J]. 振动与冲击, 2022, 41(22): 99-104
DOU Xiaoliang1,ZHANG Baoan1,ZHENG Huan2,LI Haitao1,HUANG Chao1,WANG Zhen3,WANG Tao2. Real-time hybrid test method for hunting dampers of high-speed vehicles[J]. Journal of Vibration and Shock, 2022, 41(22): 99-104

参考文献

[1] 沈志云, 张卫华. 中国高铁技术发展中的理论突破和试验突破[J]. 中国发明与专利, 2020, 17(10): 6-16.
SHEN Zhiyun, ZHANG Weihua. Breakthrough in theory development and in experiment methodology of high-speed rail technology in China[J]. China Invention& Patent, 2020, 17(10): 6-16.
[2] POLACH O. Comparability of the non-linear and linearized stability assessment during railway vehicle design[J]. Vehicle System Dynamics, 2006, 44(Suppl.1): 129-138.
[3] GOODALL R, LI H. Solid axle and independently-rotating railway wheelsets-a control engineering assessment of stability[J]. Vehicle System Dynamics, 2000, 33(1): 57-67.
[4] 吴娜, 曾京, 王忆佳. 轮轨磨耗状态下悬挂参数失效对车辆动力学性能影响[J]. 振动与冲击, 2015, 34(5):82-87.
WU Na, ZENG Jing, WANG Yijia. Effect of wheel/rail wear and suspension system failure on vehicle dynamic performance[J]. Journal of Vibration and Shock, 2015, 34(5): 82-87.
[5] 吕伟山. 新型列车减振器设计研究和性能试验[J]. 机械研究与应用, 2016, 29(4): 129-131.
LÜ Weishan. Design research and performance test of new train damper[J]. Machanical Research & Application, 2016, 29(4): 129-131.
[6] HUANG C H, ZENG J, LIANG S L. Influence of system parameters on the stability limit of the undisturbed motion of a motor bogie[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and RapidTransit, 2014, 228(5): 522-534.
[7] 魏峰, 张志方, 高亮.地震作用下车辆–轨道–桥梁系统振动台台阵试验与列车预警速度阈值研究[J]. 铁道学报, 2018,40(3): 101-106.
WEI Feng, ZHANG Zhifang, GAO Liang. Study on shaking table array test of HSR train-track bridge system under seismic action and velocity threshold of earthquake early warning[J]. Journal of the China Railway Society, 2018,40(3): 101-106.
[8] 曹礼聪, 童心豪, 张志方, 等. 列车–CRTSⅡ型板式无砟轨道–路基系统加速度响应大型振动台试验研究[J]. 铁道学报, 2019, 41(5):168-176.
CAO Licong, TONG Xinhao, ZHANG Zhifang, et al. Large shaking table test on acceleration response of train-CRTSⅡslab ballastless track-subgrade system[J]. Journal of the China Railway Society, 2019, 41(5):168-176.
[9] 肖乾, 李清华, 王成国, 等.铁道车辆液压减振器结构参数对其阻尼特性影响研究[J]. 铁道学报, 2014,36(10): 21-27.
XIAO Qian, LI Qinghua, WANG Chengguo, et al. Research on influence of railway vehicle hydraulic shock absorber structure parameters on damping characteristics[J]. Journal of the China Railway Society, 2014,36(10):21-27.
[10] 张卫华, 黄丽湘, 马启文, 等. 机车车辆动力性能的动态模拟[J]. 机械工程学报, 2007, 43(12): 114-119.
ZHANG Weihua, HUANG Lixiang, MA Qiwen, et al. Dynamic simulation on dynamic characteristics of railway vehicle[J]. Chinese Journal of Mechanical Engineering, 2007, 43(12): 114-119.
[11] 王福天.车辆动力学[M]. 北京: 中国铁道出版社, 1981.
[12] 任尊松. 车辆系统动力学[M]. 北京: 中国铁道出版社, 2020.
[13] 刘金鑫, 葛琼璇, 王晓新, 等. 高速磁浮牵引控制系统半实物实验研究[J]. 电工技术学报, 2015, 30(14): 497-503.
LIU Jinxin, GE Qiongxuan WANG Xiaoxin, et al. Hardware-in-loop research of traction-system for high-speed maglev[J]. Transactions Of China Electrotechnical Society,2015, 30(14): 497-503.
[14] 黄根生, 赵红卫, 王欣, 等. CRH_3动车组半实物仿真测试台通信的设计与实现[J]. 铁道机车车辆, 2014, 34(2): 5-9.
HUANG Gensheng, ZHAO Weihong, WANG Xin, et al. Design and implementation of communication of CRH_3 EMU hardware in the loop simulation test bench[J].Railway Locomotive & Car, 2014, 34(2): 5-9.
[15] ZHANG W H,  MEI G M,  WU X J, et al. Hybrid simulation of dynamics for the pantograph-catenary system[J].Vehicle System Dynamics, 2002, 38(6): 393-414.
[16] 李振宝, 唐贞云, 纪金豹, 等. 基于多振动台的土-结相互作用动力子结构试验方法研究[J]. 结构工程师, 2011, 27(B1):76-81.
LI Zhenbao, TANG Zhenyun, JI Jinbao, et al. Research on the dynamic sub-structuring testing method for SSI based on shaking table array[J]. Structural Engineers, 2011, 27(B1):76-81.
[17] 王涛, 潘鹏. 子结构混合试验方法研究与应用[J]. 工程力学, 2018, 35(2): 1-12.
WANG Tao, PAN Peng. Study and application of substructure online hybrid test method[J]. Engineering Mechanics, 2018, 35(2): 1-12.
[18] 吴斌, 王贞, 许国山, 等. 工程结构混合试验技术研究与应用进展[J]. 工程力学, 2022, 39(1): 1-20.
WU Bin, WANG Zhen, XU Guoshan, et al. Research and application progress in hybrid testing of engineering structures[J]. Engineering Mechanics, 2022, 39(1): 1-20.
[19] 王进廷, 金峰, 徐艳杰,等.实时耦联动力试验方法理论与实践[J]. 工程力学, 2014, 31(1): 1-14.
WANG Jinting, JIN Feng, XU Yanjie, et al. Theory and practice of real-time dynamic hybrid testing[J]. Engineering Mechanics, 2014,31(1):1-14.
[20] 王涛, 郑欢, 王贞. 黏滞阻尼器高频响应下的自适应时滞补偿设计[J]. 黑龙江科技大学学报. 2021, 31(1): 110-114.
WANG Tao , ZHENG Huan, WANG Zhen. Design of adaptive time delay compensation under high frequency response of viscous damper[J]. Journal of Heilongjiang University of Science & Technology, 2021, 31(1): 110-114.
[21] ZHOU Z, LI N. Improving model-based compensation method for real-time hybrid simulation considering error of identified model[J]. Journal of Vibration and Control, 2020(4): 107754632096162.
[22] 王贞, 李强, 吴斌.实时混合试验的自适应时滞补偿方法[J]. 工程力学, 2018, 35(9): 47-53.
WANG Zhen, LI Qiang, WU Bin. Adaptive delay compensation method for real-time hybrid testing[J]. Engineering Mechanics, 2018, 35(9): 47-53.
[23] 王贞, 王纯鹏, 吴斌.磁流变阻尼器的自适应时滞补偿实时混合试验[J]. 振动与冲击, 2019, 38(15): 190-195.
WANG Zhen, WANG Chunpeng, WU Bin. Adaptive time delay compensation method for real-time hybrid tests of MR dampers[J]. Journal of Vibration and Shock, 2019, 38(15): 190-195.
[24] SILVA C E , GOMEZ D , MAGHAREH A , et al. Benchmark control problem for real-time hybrid simulation[J]. Mechanical Systems and Signal Processing, 2019, 135: 106381.
[25] 郑欢. 力修正新型迭代混合试验方法研究[D]. 哈尔滨: 黑龙江科技大学, 2021.

PDF(1105 KB)

383

Accesses

0

Citation

Detail

段落导航
相关文章

/