双向激励下非线性压电俘能系统的稳态响应分析

夏光辉1,2,3,康小方1,2,3,李聪1,陈雷雨2,3,许庆虎1,2,3,满大伟1,2,3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 102-108.

PDF(1556 KB)
PDF(1556 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (23) : 102-108.
论文

双向激励下非线性压电俘能系统的稳态响应分析

  • 夏光辉1,2,3,康小方1,2,3,李聪1,陈雷雨2,3,许庆虎1,2,3,满大伟1,2,3
作者信息 +

Steady state response analysis of nonlinear piezoelectric energy capture system under bidirectional excitations

  • XIA Guanghui1,2,3, KANG Xiaofang1,2,3, LI Cong1, CHEN Leiyu2,3, XU Qinghu1,2,3, MAN Dawei1,2,3
Author information +
文章历史 +

摘要

基于基础激励的多向性和实际环境中的低频率环境,研究了在固定基础端受到水平和垂直双向激励的附加端部质量块悬臂梁压电俘能系统的非线性稳态响应问题。通过Hamilton原理对一个附加端部质量块悬臂梁双晶片压电俘能系统模型的非线性偏微分方程进行理论推导和计算分析。假设此悬臂梁为轴向不可伸长的Euler-Bernoulli梁,此模型主要包含几何非线性和阻尼非线性。利用Galerkin法将非线性偏微分方程降阶得到双向激励作用下附加端部质量块悬臂式压电俘能系统的机电耦合运动微分方程。采用多尺度法研究压电俘能系统在其主要的一阶共振情况下的响应,获得了俘能系统的垂直位移、输出电压和输出功率的解析表达式。得到其主要一阶垂直位移幅值,输出电压幅值和输出功率幅值。分析了不同激励情况下,激励相位等对压电俘能系统俘能性能的影响。
关键词:双向激励;非线性;压电俘能;多尺度法;相位

Abstract

Based on the multi-directionality of the foundation excitation and the low frequency environment in the real environment, the nonlinear steady-state response of the piezoelectric energy harvesting system with an additional end mass cantilever beam subjected to horizontal and vertical two-direction excitations at the fixed base end is studied. Based on Hamilton principle, the nonlinear partial differential equation of a cantilever bimorph piezoelectric energy harvesting system with an additional end mass is derived and analyzed. It is assumed that the cantilever is an axially non elongated Euler Bernoulli beam, and the model mainly includes geometric nonlinearity and damping nonlinearity. By using Galerkin method, the nonlinear partial differential equation is reduced to obtain the electromechanical coupling motion differential equation of cantilever piezoelectric energy harvesting system with end mass under two-direction excitations. The response of piezoelectric energy harvesting system under the main first-order resonance is studied by using the method of multiple scales. The analytical expressions of vertical displacement, output voltage and output power are obtained. The main first-order vertical displacement amplitude, output voltage amplitude and output power amplitude are obtained. The influence of excitation phase on the energy harvesting performance of piezoelectric energy harvesting system under different excitation conditions is analyzed.
Key words: bidirectional excitations; nonlinearity; piezoelectric energy harvesting; method of multiple scales; phase

关键词

双向激励 / 非线性 / 压电俘能 / 多尺度法 / 相位

Key words

bidirectional excitations / nonlinearity / piezoelectric energy harvesting / method of multiple scales / phase

引用本文

导出引用
夏光辉1,2,3,康小方1,2,3,李聪1,陈雷雨2,3,许庆虎1,2,3,满大伟1,2,3. 双向激励下非线性压电俘能系统的稳态响应分析[J]. 振动与冲击, 2022, 41(23): 102-108
XIA Guanghui1,2,3, KANG Xiaofang1,2,3, LI Cong1, CHEN Leiyu2,3, XU Qinghu1,2,3, MAN Dawei1,2,3. Steady state response analysis of nonlinear piezoelectric energy capture system under bidirectional excitations[J]. Journal of Vibration and Shock, 2022, 41(23): 102-108

参考文献

[1] Priya S, Song H C, Zhou Y, et al. A review on piezoelectric energy harvesting: materials, methods, and circuits[J]. Energy Harvesting and Systems, 2017, 4(1): 3-39.
[2] Safaei M, Sodano H A, Anton S R. A review of energy har-vesting using piezoelectric materials: state-of-the-art a decade later(2008-2018)[J]. Smart Materials and Structures, 2019, 28(11):113001-1-62.
[3] Khalid S, Raouf I, Khan A, et al. A Review of Human-Powered Energy Harvesting for Smart Electronics:Recent Progress and Challenges[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019,6:821-851.
[4] Xie X D,Wang Q,Wang S J. Energy harvesting from high-rise buildings by a piezoelectric harvester device[J]. Energy, 2015, 93:1345-1352.
[5] Ansari M H, Karami M A. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers[J]. Smart Materials and Structures, 2017, 26(6):065001(9pp).
[6] Xie X, Wang Q. A mathematical model for piezoelectric ring energy harvesting technology from vehicle tires[J]. International Journal of Engineering Science, 2015, 94:113-127.
[7] Anton S R, Erturk A, Inman D J. Multifunctional unmanned aerial vehicle wing spar for low-power generation and storage[J]. Journal of Aircraft, 2012, 49(1):292-301.
[8] Zhu D, Beeby S, Tudor J, et al. A credit card sized self powered smart sensor node[J]. Sensors and Actuators A Physical, 2011, 169(2):317-325.
[9] 唐礼平, 王建国. 一种具有新型动力放大器压电悬臂梁俘能器计算模型和解析解[J]. 计算力学学报, 2017, 34(5):650-656.
Tang Li-ping, Wang Jian-guo. Modeling and analytical solution of piezoelectric cantilevered energy harvester with a new dynamic magnifier[J]. Chinese Journal of Computational Mechanics, 2017, 34(5):650-656.
[10] Tang L P, Wang J G. Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier[J]. Acta Mechanica, 2017, 228(11):3997-4015.
[11] Tang L P, Wang J G. Modeling and analysis of cantilever piezoelectric energy harvester with a new-type dynamic magnifier[J].Acta Mechanica, 2018, 229(11):4643-4662.
[12] Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes[J]. Computer Communications, 2003, 26(11):1131-1144.
[13] Hu Y, Xue H, Yang J, et al. Nonlinear behavior of a piezoelectric power harvester near resonance[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2006, 53(7):1387-1391.
[14] Stanton S C, Erturk A, Mann B P, et al. Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification[J]. Journal of Applied Physics, 2010, 108(7): 074903-1-074903-9.
[15] Stanton S C, Erturk A, Mann B P, et al. Resonant manifestation of intrinsic nonlinearity within electroelastic micropower generators[J]. Applied Physics Letters, 2010, 97(25): 254101-1-254101-3.
[16] Maugin G A. Nonlinear Electromechanical Effects and Applications[M]. Singapore: World Scientific, 1986.
[17] Yang J. Analysis of Piezoelectric Devices[M]. Singapore: World Scientific, 2006.
[18] Erturk A, Hoffmann J, Inman D J. Limit Cycle Oscillations of a Nonlinear Piezo-magneto-elastic Structure for Broadband Vibration Energy Harvesting[C]// Proceedings of the 28th IMAC, A Conference on Structural Dynamics and Renewable Energy, Springer New York, 2011.
[19] Abdelkefi A, Nayfeh A H, Hajj M R. Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters[J]. Nonlinear Dynamics, 2012, 67(2):1147-1160.
[20] Daqaq M F, Masana  R, Erturk A, et al. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion[J]. Applied Mechanics Reviews, 2014, 66(4): 040801-1-040801-23.
[21] Leadenham S, Erturk A. Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation[J]. Nonlinear Dynamics, 2015, 79(3):1727-1743.
[22] Fang F, Xia G H, Wang J G. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations[J]. Acta Mechanica Sinica, 2018, 34(3): 561–577.
[23] Xia G H, Fang F, Zhang M X, Wang Q, Wang J G. Performance analysis of parametrically and directly excited nonlinear piezoelectric energy harvester[J]. Archive of Applied Mechanics, 2019, 89(10): 2147–2166.
[24] 夏光辉, 方飞, 陈涛, 王建国. 参数和直接激励下非线性压电俘能器性能分析的多尺度法[J]. 应用力学学报,2020,37(1):10-17.
    Xia Guang-hui, Fang Fei , Chen Tao, Wang Jian-guo. The performance analysis of nonlinear piezoelectric energy harvester under parametric and direct excitation[J]. Chinese Journal of Applied Mechanics,2020,37(1):10-17.
[25] 夏光辉,王建国. 参数和直接激励下附加端部质量块悬臂梁压电俘能器的多尺度法非线性分析[J]. 振动与冲击, 2020, 39(19): 69-77.
XIA Guanghui, WANG Jianguo. Nonlinear dynamic analysis for a cantilever beam with a tip mass piezoelectric energy harvester under parametric and direct excitations with multi-scale method. Journal of vibration and shock, 2020, 39(19): 69-77.
[26] Xia G H, Fang F, Zhang M X, Wang Q, Wang J G. Performance analysis of piezoelectric energy harvesters with a tip mass and nonlinearities of geometry and damping under parametric and external excitations[J]. Archive of Applied Mechanics, 2020, 90(10):2297-2318.

PDF(1556 KB)

328

Accesses

0

Citation

Detail

段落导航
相关文章

/