[1] WANG Z. Recent advances in novel metallic honeycomb structure [J]. Composites Part B: Engineering, 2019, 166: 731-41.
[2] 吴文旺, 肖登宝, 孟嘉旭,等. 负泊松比结构力学设计,抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3):28.
WU Wenwang, XIAO Dengbao, MENG Jiaxu. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engineering [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3):28.
[3] QIAO J, CHEN C Q. Analyses on the In-Plane Impact Resistance of Auxetic Double Arrowhead Honeycombs [J]. Journal of Applied Mechanics, 2015, 82(5).
[4] QIAO J X, CHEN C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs [J]. Int J Impact Eng, 2015, 83: 47-58.
[5] MOUSANEZHAD D, HAGHPANAH B, GHOSH R, et al. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach [J]. Theor App Mech Lett, 2016, 6(2): 81-96.
[6] NOVAK N, HOKAMOTO K, VESENJAK M, et al. Mechanical behaviour of auxetic cellular structures built from inverted tetrapods at high strain rates [J]. Int J Impact Eng, 2018, 122: 83-90.
[7] QI D, LU Q, HE C, et al. Impact energy absorption of functionally graded chiral honeycomb structures [J]. Extreme Mech Lett, 2019, 32.
[8] WANG T, AN J, HE H, et al. A novel 3D impact energy absorption structure with negative Poisson’s ratio and its application in aircraft crashworthiness [J]. Compos Struct, 2021, 262.
[9] ZHANG J, LU G, YOU Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review [J]. Composites Part B: Engineering, 2020, 201.
[10] XIANG J, DU J. Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading [J]. Materials Science and Engineering: A, 2017, 696: 283-9.
[11] CHEN Y J, SCARPA F, LIU Y J, et al. Elasticity of anti-tetrachiral anisotropic lattices [J]. INT J SOLIDS STRUCT, 2013, 50(6): 996-1004.
[12] FARRUGIA P S, GATT R, GRIMA J N. A Novel Three‐Dimensional Anti‐Tetrachiral Honeycomb [J]. Phys Status Solidi B Basic Res, 2018.
[13] DONG Z, LI Y, ZHAO T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb [J]. Mater Des, 2019, 182.
[14] PROGRESS IN MATERIALS SCIENCEJI L, HU W, TAO R, et al. Compression behavior of the 4D printed reentrant honeycomb: experiment and finite element analysis [J]. Smart Mater Struct, 2020, 29(11).
[15] 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性 [J]. 爆炸与冲击, 2019, 39(1)
HAN Huilong,ZHANG Xinchun,WANG PengDynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio [J]. Explosion and Shock Waves, 2019, 39(1).
[16] SLANN A, WHITE W, SCARPA F, et al. Cellular plates with auxetic rectangular perforations [J]. Phys Status Solidi B Basic Res, 2015, 252(7): 1533-9.
[17] LOGAKANNAN K P, RAMACHANDRAN V, RENGASWAMY J, et al. Quasi-static and dynamic compression behaviors of a novel auxetic structure [J]. Compos Struct, 2020, 254.
[18] WEI L, ZHAO X, YU Q, et al. In-plane compression behaviors of the auxetic star honeycomb: Experimental and numerical simulation [J]. Aerospace Science and Technology, 2021, 115.
[19] MA Y, SCARPA F, ZHANG D, et al. A nonlinear auxetic structural vibration damper with metal rubber particles [J]. Smart Mater Struct, 2013, 22(8).
[20] 魏路路, 余强, 赵轩,等. 内凹-反手性蜂窝结构的面内动态压溃性能研究[J]. 振动与冲击, 2021, 40(4):9.
WEI Lulu,U Qiang,HAO Xuan.In plane impact performance of honeycomb structure with sinusoidal curved edge and negative Poisson’s ratio [J] Journal of Vibration and Shock,2021, 40(4):9..
[21] 虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究[J]. 振动与冲击, 2021, 40(13):9.
YU Kejiong,XU Fengxiang ,HUA Lin,In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb [J]. Journal of Vibration and Shock,2021, 40(13):9.
[22] WEI L, ZHAO X, YU Q, et al. A novel star auxetic honeycomb with enhanced in-plane crushing strength [J]. THIN WALL STRUCT, 2020, 149.
[23] WANG H, LU Z, YANG Z, et al. In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions [J]. Int J Mech Sci, 2019, 151: 746-59.
[24] XU M, XU Z, ZHANG Z, et al. Mechanical properties and energy absorption capability of AuxHex structure under in-plane compression: Theoretical and experimental studies [J]. Int J Mech Sci, 2019, 159: 43-57.
[25]卢子兴, 李康. 手性和反手性蜂窝材料的面内冲击性能研究[J]. 振动与冲击, 2017(21):16-22.
LU Zixing, LI Kang. In-plane dynamic crushing of chiral and anti-chiral honeycombs [J] Journal of Vibration and Shock,2017(21):16-22.
[26]öNIG A, STRONGE W J. In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping [J]. Int J Mech Sci, 2002, 44(8): 1665-96.
[27]TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-30.